Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 4, Pages 17–24
DOI: https://doi.org/10.4213/faa4048
(Mi faa4048)
 

This article is cited in 2 scientific papers (total in 2 papers)

One-dimensional central measures on numberings of ordered sets

A. M. Vershikabc

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (523 kB) Citations (2)
References:
Abstract: We describe one-dimensional central measures on numberings (tableaux) of ideals of partially ordered sets (posets). As the main example, we study the poset $\mathbb{Z}_+^d$ and the graph of its finite ideals, multidimensional Young tableaux; for $d=2$, this is the ordinary Young graph. The central measures are stratified by dimension; in the paper we give a complete description of the one-dimensional stratum and prove that every ergodic central measure is uniquely determined by its frequencies. The suggested method, in particular, gives the first purely combinatorial proof of E. Thoma's theorem for one-dimensional central measures different from the Plancherel measure (which is of dimension $2$).
Keywords: posets, ideals, numberings, central measures.
Funding agency Grant number
Russian Science Foundation 21-11-00152
Received: 27.09.2022
Revised: 27.09.2022
Accepted: 01.10.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 4, Pages 251–256
DOI: https://doi.org/10.1134/S0016266322040025
Bibliographic databases:
Document Type: Article
UDC: 517.987
Language: Russian
Citation: A. M. Vershik, “One-dimensional central measures on numberings of ordered sets”, Funktsional. Anal. i Prilozhen., 56:4 (2022), 17–24; Funct. Anal. Appl., 56:4 (2022), 251–256
Citation in format AMSBIB
\Bibitem{Ver22}
\by A.~M.~Vershik
\paper One-dimensional central measures on numberings of ordered sets
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 4
\pages 17--24
\mathnet{http://mi.mathnet.ru/faa4048}
\crossref{https://doi.org/10.4213/faa4048}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 4
\pages 251--256
\crossref{https://doi.org/10.1134/S0016266322040025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160307165}
Linking options:
  • https://www.mathnet.ru/eng/faa4048
  • https://doi.org/10.4213/faa4048
  • https://www.mathnet.ru/eng/faa/v56/i4/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :21
    References:56
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024