Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue 3, Pages 89–112
DOI: https://doi.org/10.4213/faa4031
(Mi faa4031)
 

This article is cited in 1 scientific paper (total in 1 paper)

Resurgence and partial theta series

L. Hanab, Y. Lic, D. Sauzinda, Sh. Sunae

a Department of Mathematics, Capital Normal University
b Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
c Chern Institute of Mathematics, Nankai University
d Observatoire de Paris, Centre National de la Recherche Scientifique, Paris Sciences et Lettres University
e Academy for Multidisciplinary Studies, Capital Normal University
Full-text PDF (856 kB) Citations (1)
References:
Abstract: We consider partial theta series associated with periodic sequences of coefficients, namely, $\Theta(\tau):= \sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}$, where $\nu\in\mathbb{Z}_{\ge0}$ and $f\colon\mathbb{Z} \to \mathbb{C}$ is an $M$-periodic function. Such a function $\Theta$ is analytic in the half-plane $\{\operatorname{Im}\tau>0\}$ and in the asymptotics of $\Theta(\tau)$ as $\tau$ tends nontangentially to any $\alpha\in\mathbb{Q}$ a formal power series appears, which depends on the parity of $\nu$ and $f$. We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of $\Theta$, or its “quantum modularity” properties in the sense of Zagier's recent theory. The discrete Fourier transform of $f$ plays an unexpected role and leads to a number-theoretic analogue of Écalle's “bridge equations.” The main thesis is: (quantum) modularity $=$ Stokes phenomenon $+$ discrete Fourier transform.
Keywords: resurgence, modularity, partial theta series, topological quantum field theory.
Funding agency Grant number
National Natural Science Foundation of China 11771303
12171327
11911530092
11871045
National Program for Key Science and Technology Projects 2020YFA0713300
EU Framework Programme for Research and Innovation 810573
Received: 06.07.2022
Revised: 06.03.2023
Accepted: 09.03.2023
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue 3, Pages 248–265
DOI: https://doi.org/10.1134/S001626632303005X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. Han, Y. Li, D. Sauzin, Sh. Sun, “Resurgence and partial theta series”, Funktsional. Anal. i Prilozhen., 57:3 (2023), 89–112; Funct. Anal. Appl., 57:3 (2023), 248–265
Citation in format AMSBIB
\Bibitem{HanLiSau23}
\by L.~Han, Y.~Li, D.~Sauzin, Sh.~Sun
\paper Resurgence and partial theta series
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 3
\pages 89--112
\mathnet{http://mi.mathnet.ru/faa4031}
\crossref{https://doi.org/10.4213/faa4031}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 3
\pages 248--265
\crossref{https://doi.org/10.1134/S001626632303005X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187520198}
Linking options:
  • https://www.mathnet.ru/eng/faa4031
  • https://doi.org/10.4213/faa4031
  • https://www.mathnet.ru/eng/faa/v57/i3/p89
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :9
    References:36
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024