Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 3, Pages 16–38
DOI: https://doi.org/10.4213/faa4020
(Mi faa4020)
 

This article is cited in 4 scientific papers (total in 4 papers)

Parametric Korteweg–de Vries hierarchy and hyperelliptic sigma functions

E. Yu. Bunkova, V. M. Bukhshtaber

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (759 kB) Citations (4)
References:
Abstract: In this paper, a parametric Korteweg–de Vries hierarchy is defined that depends on an infinite set of graded parameters $a = (a_4,a_6,\dots)$. It is shown that, for any genus $g$, the Klein hyperelliptic function $\wp_{1,1}(t,\lambda)$ defined on the basis of the multidimensional sigma function $\sigma(t, \lambda)$, where $t = (t_1, t_3,\dots, t_{2g-1})$ and $\lambda = (\lambda_4, \lambda_6,\dots, \lambda_{4 g + 2})$, specifies a solution to this hierarchy in which the parameters $a$ are given as polynomials in the parameters $\lambda$ of the sigma function. The proof uses results concerning the family of operators introduced by V. M. Buchstaber and S. Yu. Shorina. This family consists of $g$ third-order differential operators in $g$ variables. Such families are defined for all $g \geqslant 1$, the operators in each of them pairwise commute with each other and also commute with the Schrödinger operator. In this paper a relationship between these families and the Korteweg–de Vries parametric hierarchy is described. A similar infinite family of third-order operators on an infinite set of variables is constructed. The results obtained are extended to the case of such a family.
Keywords: canonical Korteweg–de Vries hierarchy, parametric Korteweg–de Vries hierarchy, hyperelliptic functions, multidimensional sigma function, Buchstaber–Shorina operators, Buchstaber–\break Shorina polynomial differential operators, polynomial parametric Korteweg–de Vries hierarchy.
Funding agency Grant number
Russian Science Foundation 20-11-19998
This research was supported by the Russian Science Foundation (grant no. 20-11-19998), https://rscf.ru/project/20-11-19998/.
Received: 10.06.2022
Revised: 10.06.2022
Accepted: 15.06.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 3, Pages 169–187
DOI: https://doi.org/10.1134/S0016266322030029
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.958+512.77
Language: Russian
Citation: E. Yu. Bunkova, V. M. Bukhshtaber, “Parametric Korteweg–de Vries hierarchy and hyperelliptic sigma functions”, Funktsional. Anal. i Prilozhen., 56:3 (2022), 16–38; Funct. Anal. Appl., 56:3 (2022), 169–187
Citation in format AMSBIB
\Bibitem{BunBuk22}
\by E.~Yu.~Bunkova, V.~M.~Bukhshtaber
\paper Parametric Korteweg--de Vries hierarchy and hyperelliptic sigma functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 3
\pages 16--38
\mathnet{http://mi.mathnet.ru/faa4020}
\crossref{https://doi.org/10.4213/faa4020}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 3
\pages 169--187
\crossref{https://doi.org/10.1134/S0016266322030029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85147168859}
Linking options:
  • https://www.mathnet.ru/eng/faa4020
  • https://doi.org/10.4213/faa4020
  • https://www.mathnet.ru/eng/faa/v56/i3/p16
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :57
    References:69
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024