Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue 3, Pages 39–73
DOI: https://doi.org/10.4213/faa4012
(Mi faa4012)
 

Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree

S. Yu. Orevkov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We study the problem of describing the triples $(\Omega,g,\mu)$, $\mu=\rho\,dx$, where $g= (g^{ij}(x))$ is the (co)metric associated with a symmetric second-order differential operator $\mathbf{L}(f) = \frac{1}{\rho}\sum_{ij} \partial_i (g^{ij} \rho\,\partial_j f)$ defined on a domain $\Omega$ of $\mathbb{R}^d$ and such that there exists an orthonormal basis of $\mathcal{L}^2(\mu)$ consisting of polynomials which are eigenvectors of $\mathbf{L}$ and this basis is compatible with the filtration of the space of polynomials by some weighted degree.
In a joint paper of D. Bakry, M. Zani, and the author this problem was solved in dimension 2 for the usual degree. In the present paper we solve it still in dimension 2 but for a weighted degree with arbitrary positive weights.
Keywords: orthogonal polynomials, diffusion operator.
Funding agency Grant number
Russian Science Foundation 19-11-00316
Received: 20.05.2022
Revised: 20.05.2022
Accepted: 17.05.2023
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue 3, Pages 208–235
DOI: https://doi.org/10.1134/S0016266323030036
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Orevkov, “Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree”, Funktsional. Anal. i Prilozhen., 57:3 (2023), 39–73; Funct. Anal. Appl., 57:3 (2023), 208–235
Citation in format AMSBIB
\Bibitem{Ore23}
\by S.~Yu.~Orevkov
\paper Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 3
\pages 39--73
\mathnet{http://mi.mathnet.ru/faa4012}
\crossref{https://doi.org/10.4213/faa4012}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 3
\pages 208--235
\crossref{https://doi.org/10.1134/S0016266323030036}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187529408}
Linking options:
  • https://www.mathnet.ru/eng/faa4012
  • https://doi.org/10.4213/faa4012
  • https://www.mathnet.ru/eng/faa/v57/i3/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024