Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 2, Pages 20–32
DOI: https://doi.org/10.4213/faa4
(Mi faa4)
 

This article is cited in 29 scientific papers (total in 29 papers)

A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: For the Helmholtz equation Δu+k2u=0 in a domain Ω with a cylindrical outlet Q+=ω×R+ to infinity, we construct a fictitious scattering operator S that is unitary in L2(ω) and establish a bijection between the lineal of decaying solutions of the Dirichlet problem in Ω and the subspace of eigenfunctions of S corresponding to the eigenvalue 1 and orthogonal to the eigenfunctions with eigenvalues λnk2 of the Dirichlet problem for the Laplace operator on the cross-section ω.
Received: 21.12.2004
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 2, Pages 97–107
DOI: https://doi.org/10.1007/s10688-006-0016-1
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. A. Nazarov, “A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide”, Funktsional. Anal. i Prilozhen., 40:2 (2006), 20–32; Funct. Anal. Appl., 40:2 (2006), 97–107
Citation in format AMSBIB
\Bibitem{Naz06}
\by S.~A.~Nazarov
\paper A Criterion for the Existence of Decaying Solutions in the Problem on a Resonator with a Cylindrical Waveguide
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 2
\pages 20--32
\mathnet{http://mi.mathnet.ru/faa4}
\crossref{https://doi.org/10.4213/faa4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2256860}
\zmath{https://zbmath.org/?q=an:1162.35342}
\elib{https://elibrary.ru/item.asp?id=9213511}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 2
\pages 97--107
\crossref{https://doi.org/10.1007/s10688-006-0016-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238498600003}
\elib{https://elibrary.ru/item.asp?id=14574539}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744782568}
Linking options:
  • https://www.mathnet.ru/eng/faa4
  • https://doi.org/10.4213/faa4
  • https://www.mathnet.ru/eng/faa/v40/i2/p20
  • This publication is cited in the following 29 articles:
    1. Sergei A. Nazarov, Keijo M. Ruotsalainen, “Curved channels with constant cross sections may support trapped surface waves”, Z. Angew. Math. Phys., 74:4 (2023)  crossref
    2. S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    3. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Nazarov S.A., “Anomalies of Acoustic Wave Scattering Near the Cut-Off Points of Continuous Spectrum (a Review)”, Acoust. Phys., 66:5 (2020), 477–494  crossref  isi
    5. F. L. Bakharev, S. A. Nazarov, “Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides”, St. Petersburg Math. J., 32:6 (2021), 955–973  mathnet  crossref
    6. Chesnel L., Pagneux V., “From Zero Transmission to Trapped Modes in Waveguides”, J. Phys. A-Math. Theor., 52:16 (2019), 165304  crossref  mathscinet  isi  scopus
    7. S. A. Nazarov, “Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity”, Trans. Moscow Math. Soc., 80 (2019), 1–51  mathnet  crossref  elib
    8. Chesnel L., Pagneux V., “Simple Examples of Perfectly Invisible and Trapped Modes in Waveguides”, Q. J. Mech. Appl. Math., 71:3 (2018), 297–315  crossref  mathscinet  isi
    9. S. A. Nazarov, “Finite-Dimensional Approximations of the Steklov–Poincaré Operator for the Helmholtz Equation in Periodic Waveguides”, J Math Sci, 232:4 (2018), 461  crossref
    10. S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410  mathnet  crossref  mathscinet  isi  elib
    11. Nazarov S.A., Ruotsalainen K.M., “A Rigorous Interpretation of Approximate Computations of Embedded Eigenfrequencies of Water Waves”, Z. Anal. ihre. Anwend., 35:2 (2016), 211–242  crossref  mathscinet  zmath  isi  elib  scopus
    12. S. A. Nazarov, “Transmission Conditions in One-Dimensional Model of a Rectangular Lattice of Thin Quantum Waveguides”, J Math Sci, 219:6 (2016), 994  crossref
    13. Kemppainen J.T., Nazarov S.A., Ruotsalainen K.M., “Perturbation Analysis of Embedded Eigenvalues For Water-Waves”, J. Math. Anal. Appl., 427:1 (2015), 399–427  crossref  mathscinet  zmath  isi  elib  scopus
    14. Nazarov S.A., Ruotsalainen K.M., “Criteria For Trapped Modes in a Cranked Channel With Fixed and Freely Floating Bodies”, Z. Angew. Math. Phys., 65:5 (2014), 977–1002  crossref  mathscinet  zmath  isi  scopus
    15. S. A. Nazarov, “Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum”, Comput. Math. Math. Phys., 53:6 (2013), 702–720  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. S. A. Nazarov, “Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. S. A. Nazarov, “The Mandelstam Energy Radiation Conditions and the Umov–Poynting Vector in Elastic Waveguides”, J Math Sci, 195:5 (2013), 676  crossref
    18. S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle”, Comput. Math. Math. Phys., 52:3 (2012), 448–464  mathnet  crossref  zmath  isi  elib  elib
    19. S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    20. S. A. Nazarov, “Discrete spectrum of cranked, branchy, and periodic waveguides”, St. Petersburg Math. J., 23:2 (2012), 351–379  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:754
    Full-text PDF :249
    References:105
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025