Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue 1, Pages 24–37
DOI: https://doi.org/10.4213/faa3990
(Mi faa3990)
 

This article is cited in 6 scientific papers (total in 6 papers)

Improved inequalities for numerical radius via cartesian decomposition

P. Bhuniaa, S. Janab, M. S. Moslehianc, K. Paula

a Department of Mathematics, Jadavpur University
b Department of Mathematics, Mahisadal Girls' College
c Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad
Full-text PDF (606 kB) Citations (6)
References:
Abstract: We derive various lower bounds for the numerical radius w(A) of a bounded linear operator A defined on a complex Hilbert space, which improve the existing inequality w2(A)14AA+AA. In particular, for r1, we show that
14AA+AA12(12Re(A)+Im(A)2r+12Re(A)Im(A)2r)1/rw2(A),
where Re(A) and Im(A) are the real and imaginary parts of A, respectively. Furthermore, we obtain upper bounds for w2(A) refining the well-known upper estimate w2(A)12(w(A2)+A2). Criteria for w(A)=12A and for w(A)=12AA+AA are also given.
Keywords: numerical radius, operator norm, Cartesian decomposition, bounded linear operator.
Received: 26.02.2022
Revised: 13.10.2022
Accepted: 28.10.2022
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue 1, Pages 18–28
DOI: https://doi.org/10.1134/S0016266323010021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. Bhunia, S. Jana, M. S. Moslehian, K. Paul, “Improved inequalities for numerical radius via cartesian decomposition”, Funktsional. Anal. i Prilozhen., 57:1 (2023), 24–37; Funct. Anal. Appl., 57:1 (2023), 18–28
Citation in format AMSBIB
\Bibitem{BhuJanMos23}
\by P.~Bhunia, S.~Jana, M.~S.~Moslehian, K.~Paul
\paper Improved inequalities for numerical radius via cartesian decomposition
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 1
\pages 24--37
\mathnet{http://mi.mathnet.ru/faa3990}
\crossref{https://doi.org/10.4213/faa3990}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 1
\pages 18--28
\crossref{https://doi.org/10.1134/S0016266323010021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85169889967}
Linking options:
  • https://www.mathnet.ru/eng/faa3990
  • https://doi.org/10.4213/faa3990
  • https://www.mathnet.ru/eng/faa/v57/i1/p24
  • This publication is cited in the following 6 articles:
    1. Pintu Bhunia, Satyajit Sahoo, “Schatten p-Norm and Numerical Radius Inequalities with Applications”, Results Math, 80:1 (2025)  crossref
    2. Pintu Bhunia, “Improved bounds for the numerical radius via a new norm on ℬ(ℋ)”, Georgian Mathematical Journal, 2025  crossref
    3. Jing Liu, Deyu Wu, Alatancang Chen, “Some weighted norm inequalities for Hilbert C*-modules”, Adv. Oper. Theory, 10:1 (2025)  crossref
    4. Pintu Bhunia, “Norm inequalities for Hilbert space operators with applications”, Linear Algebra and its Applications, 2025  crossref
    5. Pintu Bhunia, Suvendu Jana, Kallol Paul, “Numerical radius inequalities and estimation of zeros of polynomials”, Georgian Mathematical Journal, 30:5 (2023), 671  crossref  mathscinet
    6. Suvendu Jana, Pintu Bhunia, Kallol Paul, “Euclidean Operator Radius Inequalities of a Pair of Bounded Linear Operators and Their Applications”, Bull Braz Math Soc, New Series, 54:1 (2023)  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :29
    References:47
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025