Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 4, Pages 80–92
DOI: https://doi.org/10.4213/faa3985
(Mi faa3985)
 

This article is cited in 1 scientific paper (total in 1 paper)

Restricted partions: the polynomial case

D. S. Minenkova, V. E. Nazaikinskiia, T. W. Hilberdinkb, V. L. Chernyshevc

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Department of Mathematics, University of Reading
c National Research University "Higher School of Economics", Moscow
Full-text PDF (675 kB) Citations (1)
References:
Abstract: We prove a restricted inverse prime number theorem for an arithmetical semigroup with polynomial growth of the abstract prime counting function. The adjective “restricted” refers to the fact that we consider the counting function of abstract integers of degree $\le t$ whose prime factorization may only contain the first $k$ abstract primes (arranged in nondescending order of their degree). The theorem provides the asymptotics of this counting function as $t,k\to\infty$. The study of the discussed asymptotics is motivated by two possible applications in mathematical physics: the calculation of the entropy of generalizations of the Bose gas and the study of the statistics of propagation of narrow wave packets on metric graphs.
Keywords: counting function, abstract prime number theorem, uniform asymptotics, metric graph.
Funding agency Grant number
HSE Academic Fund Programme
Ministry of Science and Higher Education of the Russian Federation АААА-А20-120011690131-7
Received: 17.02.2022
Revised: 19.09.2022
Accepted: 23.09.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 4, Pages 299–309
DOI: https://doi.org/10.1134/S0016266322040074
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: D. S. Minenkov, V. E. Nazaikinskii, T. W. Hilberdink, V. L. Chernyshev, “Restricted partions: the polynomial case”, Funktsional. Anal. i Prilozhen., 56:4 (2022), 80–92; Funct. Anal. Appl., 56:4 (2022), 299–309
Citation in format AMSBIB
\Bibitem{MinNazHil22}
\by D.~S.~Minenkov, V.~E.~Nazaikinskii, T.~W.~Hilberdink, V.~L.~Chernyshev
\paper Restricted partions: the polynomial case
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 4
\pages 80--92
\mathnet{http://mi.mathnet.ru/faa3985}
\crossref{https://doi.org/10.4213/faa3985}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 4
\pages 299--309
\crossref{https://doi.org/10.1134/S0016266322040074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160324918}
Linking options:
  • https://www.mathnet.ru/eng/faa3985
  • https://doi.org/10.4213/faa3985
  • https://www.mathnet.ru/eng/faa/v56/i4/p80
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :20
    References:46
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024