Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 4, Pages 109–112
DOI: https://doi.org/10.4213/faa3984
(Mi faa3984)
 

This article is cited in 4 scientific papers (total in 4 papers)

Brief communications

On an elliptic operator degenerating on the boundary

V. E. Nazaikinskii
Full-text PDF (449 kB) Citations (4)
References:
Abstract: Let $\Omega\subset\mathbb{R}^n$ be a bounded domain with smooth boundary $\partial\Omega$, let $D(x)\in C^\infty(\overline\Omega)$ be a defining function of the boundary, and let $B(x)\in C^\infty(\overline\Omega)$ be an $n\times n$ matrix function with self-adjoint positive definite values $B(x )=B^*(x)>0$ for all $x\in\overline\Omega$ The Friedrichs extension of the minimal operator given by the differential expression $\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle$ to $C_0^\infty(\Omega)$ is described.
Keywords: wave equation, degeneracy at the domain boundary, Friedrichs extension, essential domain.
Funding agency Grant number
Russian Science Foundation 21-71-30011
Received: 12.02.2022
Revised: 12.02.2022
Accepted: 22.07.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 4, Pages 324–326
DOI: https://doi.org/10.1134/S0016266322040104
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: V. E. Nazaikinskii, “On an elliptic operator degenerating on the boundary”, Funktsional. Anal. i Prilozhen., 56:4 (2022), 109–112; Funct. Anal. Appl., 56:4 (2022), 324–326
Citation in format AMSBIB
\Bibitem{Naz22}
\by V.~E.~Nazaikinskii
\paper On an elliptic operator degenerating on the boundary
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 4
\pages 109--112
\mathnet{http://mi.mathnet.ru/faa3984}
\crossref{https://doi.org/10.4213/faa3984}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4574266}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 4
\pages 324--326
\crossref{https://doi.org/10.1134/S0016266322040104}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160294268}
Linking options:
  • https://www.mathnet.ru/eng/faa3984
  • https://doi.org/10.4213/faa3984
  • https://www.mathnet.ru/eng/faa/v56/i4/p109
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :22
    References:45
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024