|
This article is cited in 4 scientific papers (total in 4 papers)
Brief communications
On an elliptic operator degenerating on the boundary
V. E. Nazaikinskii
Abstract:
Let $\Omega\subset\mathbb{R}^n$ be a bounded domain with smooth boundary $\partial\Omega$, let $D(x)\in C^\infty(\overline\Omega)$ be a defining function of the boundary, and let $B(x)\in C^\infty(\overline\Omega)$ be an $n\times n$ matrix function with self-adjoint positive definite values $B(x )=B^*(x)>0$ for all $x\in\overline\Omega$ The Friedrichs extension of the minimal operator given by the differential expression $\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle$ to $C_0^\infty(\Omega)$ is described.
Keywords:
wave equation, degeneracy at the domain boundary, Friedrichs extension, essential domain.
Received: 12.02.2022 Revised: 12.02.2022 Accepted: 22.07.2022
Citation:
V. E. Nazaikinskii, “On an elliptic operator degenerating on the boundary”, Funktsional. Anal. i Prilozhen., 56:4 (2022), 109–112; Funct. Anal. Appl., 56:4 (2022), 324–326
Linking options:
https://www.mathnet.ru/eng/faa3984https://doi.org/10.4213/faa3984 https://www.mathnet.ru/eng/faa/v56/i4/p109
|
Statistics & downloads: |
Abstract page: | 201 | Full-text PDF : | 22 | References: | 45 | First page: | 16 |
|