Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 2, Pages 39–46
DOI: https://doi.org/10.4213/faa3962
(Mi faa3962)
 

$A$-Ergodicity of Convolution Operators in Group Algebras

H. S. Mustafaeva, A. Huseynlib

a Khazar University, Department of Mathematics
b Baku State University, Mechanics-Mathematics Faculty
References:
Abstract: Let $G$ be a locally compact Abelian group with dual group $\Gamma $, let $\mu$ be a power bounded measure on $G$, and let $A=[ a_{n,k}]_{n,k=0}^{\infty}$ be a strongly regular matrix. We show that the sequence $\{\sum_{k=0}^{\infty}a_{n,k}\mu^{k}\ast f\}_{n=0}^{\infty}$ converges in the $L^{1}$-norm for every $f\in L^{1}(G)$ if and only if $\mathcal{F}_{\mu}:=\{\gamma \in \Gamma:\widehat{\mu}(\gamma) =1\} $ is clopen in $\Gamma $, where $\widehat{\mu}$ is the Fourier–Stieltjes transform of $\mu $. If $\mu $ is a probability measure, then $\mathcal{F}_{\mu}$ is clopen in $\Gamma $ if and only if the closed subgroup generated by the support of $\mu $ is compact.
Keywords: locally compact Abelian group, probability measure, regular matrix, mean ergodic theorem, convergence.
Funding agency Grant number
Science Development Foundation under the President of the Republic of Azerbaijan EIF-ETL-2020-2(36)-16/04/1-M-04
Received: 16.11.2021
Revised: 16.11.2021
Accepted: 14.02.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 2, Pages 110–115
DOI: https://doi.org/10.1134/S0016266322020046
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: H. S. Mustafaev, A. Huseynli, “$A$-Ergodicity of Convolution Operators in Group Algebras”, Funktsional. Anal. i Prilozhen., 56:2 (2022), 39–46; Funct. Anal. Appl., 56:2 (2022), 110–115
Citation in format AMSBIB
\Bibitem{MusHus22}
\by H.~S.~Mustafaev, A.~Huseynli
\paper $A$-Ergodicity of Convolution Operators in Group Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 2
\pages 39--46
\mathnet{http://mi.mathnet.ru/faa3962}
\crossref{https://doi.org/10.4213/faa3962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4500301}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 2
\pages 110--115
\crossref{https://doi.org/10.1134/S0016266322020046}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139741370}
Linking options:
  • https://www.mathnet.ru/eng/faa3962
  • https://doi.org/10.4213/faa3962
  • https://www.mathnet.ru/eng/faa/v56/i2/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :25
    References:49
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024