|
Extension Operator for Subspaces of Vector Spaces over the Field $\mathbb{F}_2$
O. V. Sipacheva, A. A. Solonkov Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
In is proved that the free topological vector space $B(X)$ over the field $\mathbb{F}_2=\{0,1\}$
generated by a stratifiable space $X$ is stratifiable, and therefore, for any closed subspace
$F\subset B(X)$ (in particular, for $F=X$) and any locally convex space $E$, there exists
a linear extension operator $C(F,E)\to C(B(X),E)$ between spaces of continuous maps.
Keywords:
extension operator, stratifiable space, Dugundji–Borges theorem, topological vector space over $\mathbb{F}_2$,
free Boolean topological group.
Received: 29.10.2021 Revised: 29.10.2021 Accepted: 22.11.2021
Citation:
O. V. Sipacheva, A. A. Solonkov, “Extension Operator for Subspaces of Vector Spaces over the Field $\mathbb{F}_2$”, Funktsional. Anal. i Prilozhen., 56:2 (2022), 64–74; Funct. Anal. Appl., 56:2 (2022), 130–137
Linking options:
https://www.mathnet.ru/eng/faa3959https://doi.org/10.4213/faa3959 https://www.mathnet.ru/eng/faa/v56/i2/p64
|
|