|
On the Arens Homomorphism
B. Turana, M. Aslantaşb a Gazi University, Faculty of Sciences
b Çankiri Karatekin Üniversitesi
Abstract:
Let $E$ be a unital $f$-module over an $f$-algebra $A$. With the help of Arens extension theory, a $(A^{\sim})_{n}^{\sim}$ module
structure on $E^{\sim}$ can be defined. The paper deals mainly with properties of
the Arens homomorphism
$\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname{Orth}(E^{\sim})$, which is defined by
the $(A^{\sim})_{n}^{\sim}$ module
structure on $E^{\sim}$. Necessary and sufficient conditions
for an $A$ submodule of
$E$ to be an order ideal are obtained.
Keywords:
Riesz space, orthomorphism, $f$-module, Arens homomorphism.
Received: 08.09.2021 Revised: 13.02.2022 Accepted: 19.02.2022
Citation:
B. Turan, M. Aslantaş, “On the Arens Homomorphism”, Funktsional. Anal. i Prilozhen., 56:2 (2022), 82–91; Funct. Anal. Appl., 56:2 (2022), 144–151
Linking options:
https://www.mathnet.ru/eng/faa3944https://doi.org/10.4213/faa3944 https://www.mathnet.ru/eng/faa/v56/i2/p82
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 28 | References: | 40 | First page: | 11 |
|