Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2021, Volume 55, Issue 3, Pages 26–41
DOI: https://doi.org/10.4213/faa3917
(Mi faa3917)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Schur–Weyl graph and Thoma's theorem.

A. M. Vershikabc, N. V. Tsilevicha

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (604 kB) Citations (1)
References:
Abstract: We define a graded graph, called the Schur–Weyl graph, which arises naturally when one considers simultaneously the RSK algorithm and the classical duality between representations of the symmetric and general linear groups. As one of the first applications of this graph, we give a new proof of the completeness of the list of discrete indecomposable characters of the infinite symmetric group.
Keywords: Schur–Weyl graph, RSK algorithm, Thoma's theorem, central measures.
Funding agency Grant number
Russian Science Foundation 21-11-00152
Received: 17.06.2021
Revised: 17.06.2021
Accepted: 21.06.2021
English version:
Functional Analysis and Its Applications, 2021, Volume 55, Issue 3, Pages 198–209
DOI: https://doi.org/10.1134/S0016266321030023
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. M. Vershik, N. V. Tsilevich, “The Schur–Weyl graph and Thoma's theorem.”, Funktsional. Anal. i Prilozhen., 55:3 (2021), 26–41; Funct. Anal. Appl., 55:3 (2021), 198–209
Citation in format AMSBIB
\Bibitem{VerTsi21}
\by A.~M.~Vershik, N.~V.~Tsilevich
\paper The Schur--Weyl graph and Thoma's theorem.
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 3
\pages 26--41
\mathnet{http://mi.mathnet.ru/faa3917}
\crossref{https://doi.org/10.4213/faa3917}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 3
\pages 198--209
\crossref{https://doi.org/10.1134/S0016266321030023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000747033300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123615566}
Linking options:
  • https://www.mathnet.ru/eng/faa3917
  • https://doi.org/10.4213/faa3917
  • https://www.mathnet.ru/eng/faa/v55/i3/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :82
    References:35
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024