|
Extended Spectra for Some Composition Operators on Weighted Hardy Spaces
I. F. Z. Bensaidab, F. León-Saavedrab, P. Romero de la Rosab a Département de Mathématiques, Laboratoire d'Analyse Mathématique et Applications, Université d'Oran 1
b Department of Mathematics, University of Cádiz
Abstract:
Let $\alpha$ be a complex scalar, and let $A$ be a bounded linear operator on a Hilbert space $H$. We say that $\alpha$ is an extended eigenvalue of $A$ if there exists a nonzero bounded linear operator $X$ such that $AX=\alpha XA$. In weighted Hardy spaces invariant under automorphisms, we completely compute the extended eigenvalues of composition operators induced by linear fractional self-mappings of the unit disk $\mathbb{D}$ with one fixed point in $\mathbb{D}$ and one outside $\overline{\mathbb{D}}$. Such classes of transformations include elliptic and loxodromic mappings as well as a hyperbolic nonautomorphic mapping.
Keywords:
Composition operator, extended eigenvalue, weighted Hardy space.
Received: 05.05.2021 Revised: 06.12.2021 Accepted: 14.12.2021
Citation:
I. F. Z. Bensaid, F. León-Saavedra, P. Romero de la Rosa, “Extended Spectra for Some Composition Operators on Weighted Hardy Spaces”, Funktsional. Anal. i Prilozhen., 56:2 (2022), 3–9; Funct. Anal. Appl., 56:2 (2022), 81–85
Linking options:
https://www.mathnet.ru/eng/faa3906https://doi.org/10.4213/faa3906 https://www.mathnet.ru/eng/faa/v56/i2/p3
|
|