Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 2, Pages 3–9
DOI: https://doi.org/10.4213/faa3906
(Mi faa3906)
 

Extended Spectra for Some Composition Operators on Weighted Hardy Spaces

I. F. Z. Bensaidab, F. León-Saavedrab, P. Romero de la Rosab

a Département de Mathématiques, Laboratoire d'Analyse Mathématique et Applications, Université d'Oran 1
b Department of Mathematics, University of Cádiz
References:
Abstract: Let $\alpha$ be a complex scalar, and let $A$ be a bounded linear operator on a Hilbert space $H$. We say that $\alpha$ is an extended eigenvalue of $A$ if there exists a nonzero bounded linear operator $X$ such that $AX=\alpha XA$. In weighted Hardy spaces invariant under automorphisms, we completely compute the extended eigenvalues of composition operators induced by linear fractional self-mappings of the unit disk $\mathbb{D}$ with one fixed point in $\mathbb{D}$ and one outside $\overline{\mathbb{D}}$. Such classes of transformations include elliptic and loxodromic mappings as well as a hyperbolic nonautomorphic mapping.
Keywords: Composition operator, extended eigenvalue, weighted Hardy space.
Funding agency Grant number
Aula Universitaria del Estrecho, Plan Propio UCA-Internacional
Ministerio de Ciencia e Innovación de España PGC2018-101514-B-I00
European Regional Development Fund
Federación Española de Enfermedades Raras FEDER-UCA18-108415
Received: 05.05.2021
Revised: 06.12.2021
Accepted: 14.12.2021
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 2, Pages 81–85
DOI: https://doi.org/10.1134/S0016266322020010
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: I. F. Z. Bensaid, F. León-Saavedra, P. Romero de la Rosa, “Extended Spectra for Some Composition Operators on Weighted Hardy Spaces”, Funktsional. Anal. i Prilozhen., 56:2 (2022), 3–9; Funct. Anal. Appl., 56:2 (2022), 81–85
Citation in format AMSBIB
\Bibitem{BenLeoRom22}
\by I.~F.~Z.~Bensaid, F.~Le{\'o}n-Saavedra, P.~Romero de la Rosa
\paper Extended Spectra for Some Composition Operators on Weighted Hardy Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 2
\pages 3--9
\mathnet{http://mi.mathnet.ru/faa3906}
\crossref{https://doi.org/10.4213/faa3906}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 2
\pages 81--85
\crossref{https://doi.org/10.1134/S0016266322020010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139667779}
Linking options:
  • https://www.mathnet.ru/eng/faa3906
  • https://doi.org/10.4213/faa3906
  • https://www.mathnet.ru/eng/faa/v56/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:198
    Full-text PDF :20
    References:46
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024