Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2021, Volume 55, Issue 3, Pages 51–61
DOI: https://doi.org/10.4213/faa3892
(Mi faa3892)
 

This article is cited in 3 scientific papers (total in 3 papers)

Maximal monotonicity of a Nemytskii operator

A. A. Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
Full-text PDF (490 kB) Citations (3)
References:
Abstract: A family of maximally monotone operators on a separable Hilbert space is considered. The domains of these operators depend on time ranging over an interval of the real line. The space of square-integrable functions on this interval taking values in the same Hilbert space is also considered. On the space of square-integrable functions a superposition (Nemytskii) operator is constructed based on a family of maximally monotone operators. Under fairly general assumptions, the maximal monotonicity of the Nemytskii operator is proved. This result is applied to the family of maximally monotone operators endowed with a pseudodistance in the sense of A. A. Vladimirov, to the family of subdifferential operators generated by a proper convex lower semicontinuous function depending on time, and to the family of normal cones of a moving closed convex set.
Keywords: maximally monotone operator, subdifferential operator, normal cone.
Received: 30.03.2021
Revised: 27.04.2021
Accepted: 29.04.2021
English version:
Functional Analysis and Its Applications, 2021, Volume 55, Issue 3, Pages 217–225
DOI: https://doi.org/10.1134/S0016266321030047
Bibliographic databases:
Document Type: Article
UDC: 517.988.525
Language: Russian
Citation: A. A. Tolstonogov, “Maximal monotonicity of a Nemytskii operator”, Funktsional. Anal. i Prilozhen., 55:3 (2021), 51–61; Funct. Anal. Appl., 55:3 (2021), 217–225
Citation in format AMSBIB
\Bibitem{Tol21}
\by A.~A.~Tolstonogov
\paper Maximal monotonicity of a Nemytskii operator
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 3
\pages 51--61
\mathnet{http://mi.mathnet.ru/faa3892}
\crossref{https://doi.org/10.4213/faa3892}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 3
\pages 217--225
\crossref{https://doi.org/10.1134/S0016266321030047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000747033300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123600459}
Linking options:
  • https://www.mathnet.ru/eng/faa3892
  • https://doi.org/10.4213/faa3892
  • https://www.mathnet.ru/eng/faa/v55/i3/p51
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :82
    References:36
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024