|
A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
N. T. Nemesh Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
In this note we discuss some necessary and some sufficient conditions for the relative injectivity
of the $C_0(S)$-module $C_0(S)$, where $S$ is a locally compact Hausdorff space.
We also give a Banach module version of Sobczyk's theorem.
The main result of the paper is as follows: if the $C_0(S)$-module $C_0(S)$ is relatively injective,
then
$S=\beta(S\setminus \{s\})$ for any limit point $s\in S$.
Keywords:
injective Banach module, $C_0(S)$-space, almost compact space.
Received: 17.02.2021 Revised: 20.07.2021 Accepted: 05.08.2021
Citation:
N. T. Nemesh, “A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$”, Funktsional. Anal. i Prilozhen., 55:4 (2021), 55–62; Funct. Anal. Appl., 55:4 (2021), 298–303
Linking options:
https://www.mathnet.ru/eng/faa3889https://doi.org/10.4213/faa3889 https://www.mathnet.ru/eng/faa/v55/i4/p55
|
|