Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 1, Pages 3–25
DOI: https://doi.org/10.4213/faa3886
(Mi faa3886)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Milnor and Tyurina numbers of zero-dimensional singularities

A. G. Aleksandrov

Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (679 kB) Citations (1)
References:
Abstract: In this paper we study relationships between some topological and analytic invariants of zero-dimensional germs, or multiple points. Among other things, it is shown that there exist no rigid zero-dimensional Gorenstein singularities and rigid almost complete intersections. In the proof of the first result we exploit the canonical duality between homology and cohomology of the cotangent complex, while in the proof of the second we use a new method which is based on the properties of the torsion functor. In addition, we obtain highly efficient estimates for the dimension of the spaces of the first lower and upper cotangent functors of arbitrary zero-dimensional singularities, including the space of derivations. We also consider examples of nonsmoothable zero-dimensional noncomplete intersections and discuss some properties and methods for constructing such singularities using the theory of modular deformations, as well as a number of other applications.
Keywords: Artinian algebras, multiple points, almost complete intersections, deviation, rigid singularities, duality, torsion functor, socle, modular deformations.
Received: 08.02.2021
Revised: 10.09.2021
Accepted: 21.11.2021
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 1, Pages 1–18
DOI: https://doi.org/10.1134/S0016266322010014
Bibliographic databases:
Document Type: Article
UDC: 515.17
Language: Russian
Citation: A. G. Aleksandrov, “On Milnor and Tyurina numbers of zero-dimensional singularities”, Funktsional. Anal. i Prilozhen., 56:1 (2022), 3–25; Funct. Anal. Appl., 56:1 (2022), 1–18
Citation in format AMSBIB
\Bibitem{Ale22}
\by A.~G.~Aleksandrov
\paper On Milnor and Tyurina numbers of zero-dimensional singularities
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 1
\pages 3--25
\mathnet{http://mi.mathnet.ru/faa3886}
\crossref{https://doi.org/10.4213/faa3886}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 1
\pages 1--18
\crossref{https://doi.org/10.1134/S0016266322010014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135163111}
Linking options:
  • https://www.mathnet.ru/eng/faa3886
  • https://doi.org/10.4213/faa3886
  • https://www.mathnet.ru/eng/faa/v56/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :58
    References:58
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024