|
Brief communications
Homogenization of nonstationary Maxwell system with constant magnetic permeability
M. A. Dorodnyi, T. A. Suslina Saint Petersburg State University
Abstract:
We study a nonstationary Maxwell system in $\mathbb{R}^3$ with dielectric
permittivity $\eta(\varepsilon^{-1}{\mathbf x})$ and magnetic permeability $\mu$.
Here $\eta(\mathbf{x})$ is a positive definite bounded symmetric $(3 \times 3)$-matrix- valued
function
periodic with respect to some lattice and
$\mu$ is a constant positive $3\times 3$ matrix. We obtain approximations
for the solutions in the
$L_2(\mathbb{R}^3;\mathbb{C}^3)$-norm for a fixed time with error estimates of operator type.
Received: 02.02.2021 Revised: 02.02.2021 Accepted: 10.02.2021
Citation:
M. A. Dorodnyi, T. A. Suslina, “Homogenization of nonstationary Maxwell system with constant magnetic permeability”, Funktsional. Anal. i Prilozhen., 55:2 (2021), 100–106; Funct. Anal. Appl., 55:2 (2021), 159–164
Linking options:
https://www.mathnet.ru/eng/faa3883https://doi.org/10.4213/faa3883 https://www.mathnet.ru/eng/faa/v55/i2/p100
|
Statistics & downloads: |
Abstract page: | 236 | Full-text PDF : | 49 | References: | 29 | First page: | 6 |
|