Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2021, Volume 55, Issue 2, Pages 44–54
DOI: https://doi.org/10.4213/faa3876
(Mi faa3876)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the spectrum of the one-particle density matrix

A. V. Sobolev

Department of Mathematics, University College London
Full-text PDF (692 kB) Citations (6)
References:
Abstract: The one-particle density matrix γ(x,y) is one of the key objects in quantum-mechanical approximation schemes. The self-adjoint operator Γ with kernel γ(x,y) is trace class, but no sharp results on the decay of its eigenvalues were previously known. The note presents the asymptotic formula λk(Ak)8/3, A0, as k for the eigenvalues λk of the operator Γ and describes the main ideas of the proof.
Received: 12.01.2021
Revised: 13.03.2021
Accepted: 15.03.2021
English version:
Functional Analysis and Its Applications, 2021, Volume 55, Issue 2, Pages 113–121
DOI: https://doi.org/10.1134/S0016266321020039
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: A. V. Sobolev, “On the spectrum of the one-particle density matrix”, Funktsional. Anal. i Prilozhen., 55:2 (2021), 44–54; Funct. Anal. Appl., 55:2 (2021), 113–121
Citation in format AMSBIB
\Bibitem{Sob21}
\by A.~V.~Sobolev
\paper On the spectrum of the one-particle density matrix
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 2
\pages 44--54
\mathnet{http://mi.mathnet.ru/faa3876}
\crossref{https://doi.org/10.4213/faa3876}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 2
\pages 113--121
\crossref{https://doi.org/10.1134/S0016266321020039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000715837400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118768108}
Linking options:
  • https://www.mathnet.ru/eng/faa3876
  • https://doi.org/10.4213/faa3876
  • https://www.mathnet.ru/eng/faa/v55/i2/p44
  • This publication is cited in the following 6 articles:
    1. Jerzy Cioslowski, Krzysztof Strasburger, “Natural Densitals”, J. Phys. Chem. Lett., 2025, 710  crossref
    2. Jerzy Cioslowski, Krzysztof Strasburger, “Constraints upon Functionals of the 1-Matrix, Universal Properties of Natural Orbitals, and the Fallacy of the Collins “Conjecture””, J. Phys. Chem. Lett., 15:5 (2024), 1328  crossref
    3. J. Cioslowski, Ch. Schilling, R. Schilling, “1-Matrix functional for long-range interaction energy of two hydrogen atoms”, The Journal of Chemical Physics, 158:8 (2023), 084106  crossref
    4. J. Cioslowski, K. Strasburger, “Symmetry equiincidence of natural orbitals”, J. Phys. Chem. Lett., 14:41 (2023), 9296  crossref
    5. A. V. Sobolev, “Eigenvalue asymptotics for the one-particle kinetic energy density operator”, Journal of Functional Analysis, 283:8 (2022), 109604  crossref  mathscinet  zmath
    6. J. Cioslowski, K. Strasburger, “A universal power law governing the accuracy of wave function-based electronic structure calculations”, J. Phys. Chem. Lett., 13:34 (2022), 8055  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :65
    References:49
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025