Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2021, Volume 55, Issue 1, Pages 56–64
DOI: https://doi.org/10.4213/faa3870
(Mi faa3870)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Simple ${\mathbb Z}_3$-Invariant Function Germs

S. M. Gusein-Zadeabc, A.-M. Ya. Rauchc

a Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
c National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (584 kB) Citations (1)
References:
Abstract: V. I. Arnold classified simple (i.e., having no moduli for classification) singularities (function germs) and also simple boundary singularities, that is, function germs invariant with respect to the action $\sigma(x_1; y_1,\dots, y_n)=(-x_1; y_1,\dots, y_n)$ of the group ${\mathbb Z}_2$. In particular, he showed that a function germ (a germ of a boundary singularity) is simple if and only if the intersection form (respectively, the restriction of the intersection form to the subspace of anti-invariant cycles) of a germ in $3+4s$ variables stably equivalent to the one under consideration is negative definite and if and only if the (equivariant) monodromy group on the corresponding space is finite. In a previous paper the authors obtained analogues of the latter statements for function germs invariant with respect to an arbitrary action of the group ${\mathbb Z}_2$ and also for corner singularities. This paper presents an analogue of the simplicity criterion in terms of the intersection form for functions invariant with respect to a number of actions (representations) of the group ${\mathbb Z}_3$.
Keywords: Group action, invariant germ, simple singularity.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00579
Received: 26.12.2020
Revised: 28.12.2020
Accepted: 30.12.2020
English version:
Functional Analysis and Its Applications, 2021, Volume 55, Issue 1, Pages 45–51
DOI: https://doi.org/10.1134/S0016266321010056
Bibliographic databases:
Document Type: Article
UDC: 517.55+515.177
Language: Russian
Citation: S. M. Gusein-Zade, A.-M. Ya. Rauch, “On Simple ${\mathbb Z}_3$-Invariant Function Germs”, Funktsional. Anal. i Prilozhen., 55:1 (2021), 56–64; Funct. Anal. Appl., 55:1 (2021), 45–51
Citation in format AMSBIB
\Bibitem{GusRau21}
\by S.~M.~Gusein-Zade, A.-M.~Ya.~Rauch
\paper On Simple ${\mathbb Z}_3$-Invariant Function Germs
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 1
\pages 56--64
\mathnet{http://mi.mathnet.ru/faa3870}
\crossref{https://doi.org/10.4213/faa3870}
\elib{https://elibrary.ru/item.asp?id=47085539}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 1
\pages 45--51
\crossref{https://doi.org/10.1134/S0016266321010056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000693828500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114630026}
Linking options:
  • https://www.mathnet.ru/eng/faa3870
  • https://doi.org/10.4213/faa3870
  • https://www.mathnet.ru/eng/faa/v55/i1/p56
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :83
    References:49
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024