Abstract:
We study the analog of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results.
Keywords:
infinitesimal center, tangential center, Abelian integral, composition conjecture, monodromy.
Citation:
A. Álvarez, J. L. Bravo, C. Christopher, P. Mardešić, “Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture”, Funktsional. Anal. i Prilozhen., 55:4 (2021), 3–21; Funct. Anal. Appl., 55:4 (2021), 257–271
\Bibitem{AlvBraChr21}
\by A.~\'Alvarez, J.~L.~Bravo, C.~Christopher, P.~Marde{\v s}i{\'c}
\paper Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 4
\pages 3--21
\mathnet{http://mi.mathnet.ru/faa3854}
\crossref{https://doi.org/10.4213/faa3854}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 4
\pages 257--271
\crossref{https://doi.org/10.1134/S0016266321040018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000770340500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127185699}
Linking options:
https://www.mathnet.ru/eng/faa3854
https://doi.org/10.4213/faa3854
https://www.mathnet.ru/eng/faa/v55/i4/p3
This publication is cited in the following 2 articles:
J.L. Bravo, P. Mardešić, D. Novikov, J. Pontigo-Herrera, “Infinitesimal and tangential 16-th Hilbert problem on zero-cycles”, Bulletin des Sciences Mathématiques, 2025, 103634
V. T. Borukhov, “Algebraic criterion for the existence of a center at a monodromic singular point of a polynomial Liénard system”, Diff. Equat., 58:8 (2022), 1008