|
Brief communications
Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
V. S. Rabinovich Instituto Politecnico Nacional, ESIME–Zacatenco
Abstract:
We consider the self-adjointness and essential spectrum of 3D Dirac
operators with bounded variable magnetic and electrostatic potentials and with
singular delta-type potentials with supports on uniformly regular unbounded
surfaces $\Sigma$ in $\mathbb{R}^{3}$.
Keywords:
3D Dirac operators, singular potentials, self-adjointness,
essential spectrum.
Received: 26.08.2020 Revised: 26.08.2020 Accepted: 20.10.2020
Citation:
V. S. Rabinovich, “Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$”, Funktsional. Anal. i Prilozhen., 55:3 (2021), 85–90; Funct. Anal. Appl., 55:3 (2021), 245–249
Linking options:
https://www.mathnet.ru/eng/faa3838https://doi.org/10.4213/faa3838 https://www.mathnet.ru/eng/faa/v55/i3/p85
|
Statistics & downloads: |
Abstract page: | 202 | Full-text PDF : | 54 | References: | 32 | First page: | 17 |
|