Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 4, Pages 74–84
DOI: https://doi.org/10.4213/faa3809
(Mi faa3809)
 

This article is cited in 4 scientific papers (total in 4 papers)

Compact Operators and Uniform Structures in Hilbert $C^*$-Modules

E. V. Troitskiiab, D. V. Fufaevab

a Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
b Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (603 kB) Citations (4)
References:
Abstract: Quite recently a criterion for the $\mathcal{A}$-compactness of an ajointable operator $F\colon\M\to\mathcal{N}$ between Hilbert $C^*$-modules, where $\mathcal{N}$ is countably generated, was obtained. Namely, a uniform structure (a system of pseudometrics) in $\mathcal{N}$ was discovered such that $F$ is $\mathcal{A}$-compact if and only if $F(B)$ is totally bounded, where $B\subset\M$ is the unit ball.
We prove that (1) for a general $\mathcal{N}$, $\mathcal{A}$-compactness implies total boundedness, (2) for $\mathcal{N}$ with $\mathcal{N}\oplus K\cong L$, where $L$ is an uncountably generated $\ell_2$-type module, total boundedness implies compactness, and (3) for $\mathcal{N}$ close to be countably generated, it suffices to use only pseudometrics of “frame-like origin” to obtain a criterion for $\mathcal{A}$-compactness.
Keywords: Hilbert $C^*$-Module, uniform structure, totally bounded set, compact operator, $\mathcal{A}$-compact operator, frame.
Received: 15.06.2020
Revised: 15.07.2020
Accepted: 21.07.2020
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 4, Pages 287–294
DOI: https://doi.org/10.1134/S0016266320040061
Bibliographic databases:
Document Type: Article
UDC: 917.98
Language: Russian
Citation: E. V. Troitskii, D. V. Fufaev, “Compact Operators and Uniform Structures in Hilbert $C^*$-Modules”, Funktsional. Anal. i Prilozhen., 54:4 (2020), 74–84; Funct. Anal. Appl., 54:4 (2020), 287–294
Citation in format AMSBIB
\Bibitem{TroFuf20}
\by E.~V.~Troitskii, D.~V.~Fufaev
\paper Compact Operators and Uniform Structures in Hilbert $C^*$-Modules
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 4
\pages 74--84
\mathnet{http://mi.mathnet.ru/faa3809}
\crossref{https://doi.org/10.4213/faa3809}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173025}
\elib{https://elibrary.ru/item.asp?id=46796842}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 4
\pages 287--294
\crossref{https://doi.org/10.1134/S0016266320040061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000656894500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107371546}
Linking options:
  • https://www.mathnet.ru/eng/faa3809
  • https://doi.org/10.4213/faa3809
  • https://www.mathnet.ru/eng/faa/v54/i4/p74
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024