Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 3, Pages 94–99
DOI: https://doi.org/10.4213/faa3807
(Mi faa3807)
 

This article is cited in 13 scientific papers (total in 13 papers)

Brief communications

Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account

V. A. Sloushch, T. A. Suslina

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: An elliptic fourth-order differential operator $A_\varepsilon$ on $L_2(\mathbb{R}^d;\mathbb{C}^n)$ is studied. Here $\varepsilon >0$ is a small parameter. It is assumed that the operator is given in the factorized form $A_\varepsilon = b(\mathbf{D})^* g(\mathbf{x}/\varepsilon) b(\mathbf{D})$, where $g(\mathbf{x})$ is a Hermitian matrix-valued function periodic with respect to some lattice and $b(\mathbf{D})$ is a matrix second-order differential operator. We make assumptions ensuring that the operator $A_\varepsilon$ is strongly elliptic. The following approximation for the resolvent $(A_\varepsilon + I)^{-1}$ in the operator norm of $L_2(\mathbb{R}^d;\mathbb{C}^n)$ is obtained:
$$ (A_{\varepsilon}+I)^{-1}=(A^{0}+I)^{-1}+\varepsilon K_{1}+\varepsilon^{2}K_{2}(\varepsilon)+O(\varepsilon^{3}). $$
Here $A^0$ is the effective operator with constant coefficients and $K_{1}$ and $K_{2}(\varepsilon)$ are certain correctors.
Keywords: periodic differential operators, homogenization, operator error estimates, effective operator, corrector.
Funding agency Grant number
Russian Science Foundation 17-11-01069
This work was supported by the Russian Science Foundation, project no. 17-11-01069.
Received: 07.07.2020
Revised: 09.07.2020
Accepted: 12.07.2020
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 3, Pages 224–228
DOI: https://doi.org/10.1134/S0016266320030077
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: V. A. Sloushch, T. A. Suslina, “Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account”, Funktsional. Anal. i Prilozhen., 54:3 (2020), 94–99; Funct. Anal. Appl., 54:3 (2020), 224–228
Citation in format AMSBIB
\Bibitem{SloSus20}
\by V.~A.~Sloushch, T.~A.~Suslina
\paper Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 3
\pages 94--99
\mathnet{http://mi.mathnet.ru/faa3807}
\crossref{https://doi.org/10.4213/faa3807}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4136857}
\elib{https://elibrary.ru/item.asp?id=46806080}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 3
\pages 224--228
\crossref{https://doi.org/10.1134/S0016266320030077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000626500200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102183614}
Linking options:
  • https://www.mathnet.ru/eng/faa3807
  • https://doi.org/10.4213/faa3807
  • https://www.mathnet.ru/eng/faa/v54/i3/p94
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024