|
This article is cited in 6 scientific papers (total in 6 papers)
On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces
T. A. Garmanova, I. A. Sheipak Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Abstract:
The norms of embedding operators $\mathring{W}^n_2[0,1]\hookrightarrow\mathring{W}^k_\infty[0,1]$ ($0\leqslant k\leqslant n-1$)
of Sobolev spaces are considered. The least possible values of $A^2_{n,k}(x)$ in the inequalities $|f^{(k)}(x)|^2\leqslant A^2_{n,k}(x)\|f^{(n)}\|^2_{L_2[0,1]}$ ($f\in \mathring{W}^n_2[0,1]$) are studied. On the basis of relations between the functions $A^2_{n,k}(x)$ and primitives of the Legendre polynomials, properties of the maxima of the functions $A^2_{n,k}(x)$ are determined. It is shown that, for
any $k$, the points of global maximum of the function $A^2_{n,k}$ on the interval $[0,1]$ is the point of local maximum nearest to the midpoint of this interval; in particular, for even $k$, such a point is $x=1/2$. For all even $k$, explicit expressions for the norms of embedding operators are found.
Keywords:
Sobolev spaces, Legendre polynomials, embedding constants, estimates for derivatives .
Received: 06.06.2020 Revised: 09.07.2020 Accepted: 14.07.2020
Citation:
T. A. Garmanova, I. A. Sheipak, “On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces”, Funktsional. Anal. i Prilozhen., 55:1 (2021), 43–55; Funct. Anal. Appl., 55:1 (2021), 34–44
Linking options:
https://www.mathnet.ru/eng/faa3805https://doi.org/10.4213/faa3805 https://www.mathnet.ru/eng/faa/v55/i1/p43
|
Statistics & downloads: |
Abstract page: | 385 | Full-text PDF : | 87 | References: | 35 | First page: | 15 |
|