Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2021, Volume 55, Issue 1, Pages 43–55
DOI: https://doi.org/10.4213/faa3805
(Mi faa3805)
 

This article is cited in 6 scientific papers (total in 6 papers)

On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces

T. A. Garmanova, I. A. Sheipak

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (658 kB) Citations (6)
References:
Abstract: The norms of embedding operators $\mathring{W}^n_2[0,1]\hookrightarrow\mathring{W}^k_\infty[0,1]$ ($0\leqslant k\leqslant n-1$) of Sobolev spaces are considered. The least possible values of $A^2_{n,k}(x)$ in the inequalities $|f^{(k)}(x)|^2\leqslant A^2_{n,k}(x)\|f^{(n)}\|^2_{L_2[0,1]}$ ($f\in \mathring{W}^n_2[0,1]$) are studied. On the basis of relations between the functions $A^2_{n,k}(x)$ and primitives of the Legendre polynomials, properties of the maxima of the functions $A^2_{n,k}(x)$ are determined. It is shown that, for any $k$, the points of global maximum of the function $A^2_{n,k}$ on the interval $[0,1]$ is the point of local maximum nearest to the midpoint of this interval; in particular, for even $k$, such a point is $x=1/2$. For all even $k$, explicit expressions for the norms of embedding operators are found.
Keywords: Sobolev spaces, Legendre polynomials, embedding constants, estimates for derivatives .
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00240
Russian Science Foundation 20-11-20261
Received: 06.06.2020
Revised: 09.07.2020
Accepted: 14.07.2020
English version:
Functional Analysis and Its Applications, 2021, Volume 55, Issue 1, Pages 34–44
DOI: https://doi.org/10.1134/S0016266321010044
Bibliographic databases:
Document Type: Article
UDC: 517.984+517.518.23
MSC: 26D10, 46E35
Language: Russian
Citation: T. A. Garmanova, I. A. Sheipak, “On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces”, Funktsional. Anal. i Prilozhen., 55:1 (2021), 43–55; Funct. Anal. Appl., 55:1 (2021), 34–44
Citation in format AMSBIB
\Bibitem{GarShe21}
\by T.~A.~Garmanova, I.~A.~Sheipak
\paper On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 1
\pages 43--55
\mathnet{http://mi.mathnet.ru/faa3805}
\crossref{https://doi.org/10.4213/faa3805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3909120}
\elib{https://elibrary.ru/item.asp?id=47514616}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 1
\pages 34--44
\crossref{https://doi.org/10.1134/S0016266321010044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000693828500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117260388}
Linking options:
  • https://www.mathnet.ru/eng/faa3805
  • https://doi.org/10.4213/faa3805
  • https://www.mathnet.ru/eng/faa/v55/i1/p43
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :87
    References:35
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024