|
This article is cited in 1 scientific paper (total in 1 paper)
Minimal Widths of Metric Spaces
R. S. Ismagilov N. E. Bauman Moscow State Technical University
Abstract:
The minimal width of an arbitrary metric space is defined as the greatest lower bound of its Kolmogorov widths under all isometric embeddings in all possible Banach spaces and is computed or estimated in a number of examples.
Received: 16.03.1998
Citation:
R. S. Ismagilov, “Minimal Widths of Metric Spaces”, Funktsional. Anal. i Prilozhen., 33:4 (1999), 38–49; Funct. Anal. Appl., 33:4 (1999), 270–279
Linking options:
https://www.mathnet.ru/eng/faa379https://doi.org/10.4213/faa379 https://www.mathnet.ru/eng/faa/v33/i4/p38
|
Statistics & downloads: |
Abstract page: | 412 | Full-text PDF : | 199 | References: | 75 | First page: | 2 |
|