Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 4, Pages 17–36
DOI: https://doi.org/10.4213/faa3767
(Mi faa3767)
 

This article is cited in 3 scientific papers (total in 3 papers)

Expansive Endomorphisms on the Infinite-Dimensional Torus

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
b Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (658 kB) Citations (3)
References:
Abstract: A natural class of expansive endomorphisms $G\in C^1$ of the infinite-dimensional torus $\mathbb{T}^{\infty}$ (the Cartesian product of countably many circles with the product topology) is considered. The endomorphisms in this class can be represented in the form of the sum of a linear expansion and a periodic addition. The following standard facts of hyperbolic theory are proved: the topological conjugacy of any expansive endomorphism $G$ from the class under consideration to a linear endomorphism of the torus, the structural stability of $G$, and the topological mixing property of $G$ on $\mathbb{T}^{\infty}$.
Keywords: endomorphism, hyperbolicity, torus, topological conjugacy, structural stability, mixing.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10055-мк
Received: 04.03.2020
Revised: 13.06.2020
Accepted: 18.06.2020
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 4, Pages 241–256
DOI: https://doi.org/10.1134/S0016266320040024
Bibliographic databases:
Document Type: Article
UDC: 517.926+517.938
MSC: 37D20
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Expansive Endomorphisms on the Infinite-Dimensional Torus”, Funktsional. Anal. i Prilozhen., 54:4 (2020), 17–36; Funct. Anal. Appl., 54:4 (2020), 241–256
Citation in format AMSBIB
\Bibitem{GlyKolRoz20}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Expansive Endomorphisms on the Infinite-Dimensional Torus
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 4
\pages 17--36
\mathnet{http://mi.mathnet.ru/faa3767}
\crossref{https://doi.org/10.4213/faa3767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173021}
\elib{https://elibrary.ru/item.asp?id=46838473}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 4
\pages 241--256
\crossref{https://doi.org/10.1134/S0016266320040024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000656894500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107362298}
Linking options:
  • https://www.mathnet.ru/eng/faa3767
  • https://doi.org/10.4213/faa3767
  • https://www.mathnet.ru/eng/faa/v54/i4/p17
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :44
    References:30
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024