Abstract:
A natural class of expansive endomorphisms $G\in C^1$ of the infinite-dimensional torus $\mathbb{T}^{\infty}$ (the Cartesian product of countably many circles with the product topology) is considered. The endomorphisms in this class can be represented in the form of the sum of a linear expansion and a periodic addition. The following standard facts of hyperbolic theory are proved: the topological conjugacy of any expansive endomorphism $G$ from the class under consideration to a linear endomorphism of the torus, the structural stability of $G$, and the topological mixing property of $G$ on $\mathbb{T}^{\infty}$.
Citation:
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Expansive Endomorphisms on the Infinite-Dimensional Torus”, Funktsional. Anal. i Prilozhen., 54:4 (2020), 17–36; Funct. Anal. Appl., 54:4 (2020), 241–256
This publication is cited in the following 4 articles:
S. D. Glyzin, A. Yu. Kolesov, “Cone criterion on an infinite-dimensional torus”, Izv. Math., 88:6 (2024), 1087–1118
S. D. Glyzin, A. Yu. Kolesov, “Dinamicheskie sistemy na beskonechnomernom tore: osnovy giperbolicheskoi teorii”, Tr. MMO, 84, no. 1, MTsNMO, M., 2023, 55–116
S. D. Glyzin, A. Yu. Kolesov, “On Some Properties of the Shift on an Infinite-Dimensional Torus”, Diff Equat, 59:7 (2023), 867
S. D. Glyzin, A. Yu. Kolesov, “Elements of hyperbolic theory on an infinite-dimensional torus”, Russian Math. Surveys, 77:3 (2022), 379–443