Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 3, Pages 8–25
DOI: https://doi.org/10.4213/faa3760
(Mi faa3760)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Structure of the Algebra of Weak Jacobi Forms for the Root System F4

D. V. Adler

International Laboratory for Mirror Symmetry and Automorphic Forms, National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (700 kB) Citations (4)
References:
Abstract: We prove the polynomiality of the bigraded ring Jw,W,(F4) of weak Jacobi forms for the root system F4 which are invariant with respect to the corresponding Weyl group. This work is a continuation of a joint article with V. A. Gritsenko, where the structure of the algebras of weak Jacobi forms related to the root systems of Dn type for 2n8 was studied.
Keywords: Jacobi forms, invariant theory.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 14.641.31.0001
This work was supported by International Laboratory for Mirror Symmetry and Automorphic Forms, National Research University Higher School of Economics, under Government grant no. 14.641.31.0001.
Received: 10.02.2020
Revised: 12.04.2020
Accepted: 22.04.2020
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 3, Pages 155–168
DOI: https://doi.org/10.1134/S0016266320030016
Bibliographic databases:
Document Type: Article
UDC: 519.728
MSC: 11F50, 16W22
Language: Russian
Citation: D. V. Adler, “The Structure of the Algebra of Weak Jacobi Forms for the Root System F4”, Funktsional. Anal. i Prilozhen., 54:3 (2020), 8–25; Funct. Anal. Appl., 54:3 (2020), 155–168
Citation in format AMSBIB
\Bibitem{Adl20}
\by D.~V.~Adler
\paper The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 3
\pages 8--25
\mathnet{http://mi.mathnet.ru/faa3760}
\crossref{https://doi.org/10.4213/faa3760}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4136851}
\elib{https://elibrary.ru/item.asp?id=46767312}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 3
\pages 155--168
\crossref{https://doi.org/10.1134/S0016266320030016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102180993}
Linking options:
  • https://www.mathnet.ru/eng/faa3760
  • https://doi.org/10.4213/faa3760
  • https://www.mathnet.ru/eng/faa/v54/i3/p8
  • This publication is cited in the following 4 articles:
    1. Dmitrii Adler, Valery Gritsenko, “Modular differential equations of W(D)-invariant Jacobi forms”, Journal of Geometry and Physics, 2024, 105339  crossref
    2. K. Sakai, “$\mathrm{E}$-strings, $F_4$, and $D_4$ triality”, J. High Energ. Phys., 2023:7 (2023), 192  crossref
    3. K. Sakai, “Algebraic construction of Weyl invariant $E_8$ Jacobi forms”, Journal of Number Theory, 244 (2023), 42  crossref  mathscinet
    4. H. Wang, “Weyl invariant Jacobi forms: a new approach”, Adv. Math., 384 (2021), 107752  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :80
    References:40
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025