Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2021, Volume 55, Issue 1, Pages 93–97
DOI: https://doi.org/10.4213/faa3751
(Mi faa3751)
 

Brief communications

On the Symmetrizations of $\varepsilon$-Isometries on Positive Cones of Continuous Function Spaces

Longfa Sun

School of Mathematics and Physics, North China Electric Power University, Baoding, China
References:
Abstract: Let $K$ be a compact Hausdorff space, $C(K)$ be the real Banach space of all continuous functions on $K$ endowed with the supremum norm, and $C(K)^+$ be the positive cone of $C(K)$. A weak stability result for the symmetrization $\Theta=(f(\,\boldsymbol\cdot\,)-f(-\;\boldsymbol\cdot\,)/2$ of a general $\varepsilon$-isometry $f$ from $C(K)^+\cup-C(K)^+$ to a Banach space $Y$ is obtained: For any element $k\in K$, there exists a $\phi\in S_{Y^\ast}$ such that
\begin{equation*} |\langle\delta_k,x\rangle-\langle\phi,\Theta(x)\rangle|\le3\varepsilon/2\quad\text{for all }\,x\in C(K)^+\cup-C(K)^+. \end{equation*}
This result is used to prove new stability theorems for the symmetrization $\Theta$ of $f$.
Keywords: symmetrization of $\varepsilon$-isometry, stability, function space.
Funding agency Grant number
Fundamental Research Funds for the Central Universities of China 2019MS121
Received: 03.01.2020
Revised: 27.09.2020
Accepted: 22.11.2020
English version:
Functional Analysis and Its Applications, 2021, Volume 55, Issue 1, Pages 75–79
DOI: https://doi.org/10.1134/S0016266321010081
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Longfa Sun, “On the Symmetrizations of $\varepsilon$-Isometries on Positive Cones of Continuous Function Spaces”, Funktsional. Anal. i Prilozhen., 55:1 (2021), 93–97; Funct. Anal. Appl., 55:1 (2021), 75–79
Citation in format AMSBIB
\Bibitem{Sun21}
\by Longfa~Sun
\paper On the Symmetrizations of $\varepsilon$-Isometries on Positive Cones of Continuous Function Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2021
\vol 55
\issue 1
\pages 93--97
\mathnet{http://mi.mathnet.ru/faa3751}
\crossref{https://doi.org/10.4213/faa3751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3909124}
\transl
\jour Funct. Anal. Appl.
\yr 2021
\vol 55
\issue 1
\pages 75--79
\crossref{https://doi.org/10.1134/S0016266321010081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000693828500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114509746}
Linking options:
  • https://www.mathnet.ru/eng/faa3751
  • https://doi.org/10.4213/faa3751
  • https://www.mathnet.ru/eng/faa/v55/i1/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024