|
Brief communications
On the Symmetrizations of $\varepsilon$-Isometries on Positive Cones of Continuous Function Spaces
Longfa Sun School of Mathematics and Physics, North China Electric Power University, Baoding, China
Abstract:
Let $K$ be a compact Hausdorff space, $C(K)$ be the real Banach space of all continuous functions on $K$ endowed with the supremum norm,
and $C(K)^+$ be the positive cone of $C(K)$. A weak stability result for the symmetrization $\Theta=(f(\,\boldsymbol\cdot\,)-f(-\;\boldsymbol\cdot\,)/2$ of a general $\varepsilon$-isometry $f$ from $C(K)^+\cup-C(K)^+$ to a Banach space $Y$
is obtained: For any element $k\in K$, there exists a $\phi\in S_{Y^\ast}$ such that
\begin{equation*}
|\langle\delta_k,x\rangle-\langle\phi,\Theta(x)\rangle|\le3\varepsilon/2\quad\text{for
all }\,x\in C(K)^+\cup-C(K)^+.
\end{equation*}
This result is used to prove new stability theorems for the symmetrization $\Theta$ of $f$.
Keywords:
symmetrization of $\varepsilon$-isometry, stability, function space.
Received: 03.01.2020 Revised: 27.09.2020 Accepted: 22.11.2020
Citation:
Longfa Sun, “On the Symmetrizations of $\varepsilon$-Isometries on Positive Cones of Continuous Function Spaces”, Funktsional. Anal. i Prilozhen., 55:1 (2021), 93–97; Funct. Anal. Appl., 55:1 (2021), 75–79
Linking options:
https://www.mathnet.ru/eng/faa3751https://doi.org/10.4213/faa3751 https://www.mathnet.ru/eng/faa/v55/i1/p93
|
|