Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 2, Pages 35–47
DOI: https://doi.org/10.4213/faa3723
(Mi faa3723)
 

This article is cited in 2 scientific papers (total in 2 papers)

Average number of solutions for systems of equations

B. Ya. Kazarnovskii

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (653 kB) Citations (2)
References:
Abstract: For $n$ finite-dimensional spaces of smooth functions $V _i $ on a smooth $n$-dimensional manifold $X$, the systems of equations $ \{f_i = a_i \colon \: f_i \in V_i, \: a_i \in \mathbb{R}, \: i = 1, \ldots, n \} $ are considered. A connection is established between the average numbers of solutions and the mixed volumes of convex bodies. To do this, fixing Banach metrics of the spaces $ V_i $, we construct 1) measures in the spaces of systems of equations, and 2) Banach convex bodies in $X$, those. families of centrally symmetric convex bodies in the layers of the cotangent bundle $X$. It is proved that the average number of solutions is equal to the mixed symplectic volume of Banach convex bodies. The case of Euclidean metrics in the spaces $ V_i $ was previously considered. In this case, the Banach bodies are ellipsoid families.
Keywords: Banach space, Crofton formula, normal density, mixed volume.
Received: 13.08.2019
Revised: 25.02.2020
Accepted: 01.03.2020
Bibliographic databases:
Document Type: Article
UDC: 515.16+517.986.64
MSC: 52A39, 51B20, 53C65
Language: Russian
Citation: B. Ya. Kazarnovskii, “Average number of solutions for systems of equations”, Funktsional. Anal. i Prilozhen., 54:2 (2020), 35–47
Citation in format AMSBIB
\Bibitem{Kaz20}
\by B.~Ya.~Kazarnovskii
\paper Average number of solutions for systems of equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 2
\pages 35--47
\mathnet{http://mi.mathnet.ru/faa3723}
\crossref{https://doi.org/10.4213/faa3723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1475320}
Linking options:
  • https://www.mathnet.ru/eng/faa3723
  • https://doi.org/10.4213/faa3723
  • https://www.mathnet.ru/eng/faa/v54/i2/p35
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :42
    References:57
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024