Abstract:
This paper describes a class of spectral curves and gives explicit formulas for the Darboux coordinates of the Hitchin systems of types $A_l$, $B_l$, and $C_l$ on hyperelliptic curves. The current state of the problem in the case of the systems of type $D_l$ is described.
Citation:
O. K. Sheinman, “Spectral Curves of the Hyperelliptic Hitchin Systems”, Funktsional. Anal. i Prilozhen., 53:4 (2019), 63–78; Funct. Anal. Appl., 53:4 (2019), 291–303
This publication is cited in the following 7 articles:
Russian Math. Surveys, 79:4 (2024), 683–720
O. K. Sheinman, “Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves”, Proc. Steklov Inst. Math., 325 (2024), 292–303
P. Borisova, “Separation of variables for type $D_n$ Hitchin systems on a hyperelliptic curve”, Russian Math. Surveys, 76:2 (2021), 363–365
P. I. Borisova, O. K. Sheinman, “Hitchin Systems on Hyperelliptic Curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35
O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. Math., 102:3 (2020), 524–527
O. K. Sheinman, “Spectral Curves of the Hyperelliptic Hitchin Systems”, Funct. Anal. Appl., 53:4 (2019), 291–303
O. K. Sheinman, “Integrable Systems of Algebraic Origin and Separation of Variables”, Funct. Anal. Appl., 52:4 (2018), 316–320