Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2019, Volume 53, Issue 3, Pages 45–60
DOI: https://doi.org/10.4213/faa3632
(Mi faa3632)
 

This article is cited in 6 scientific papers (total in 6 papers)

Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators

A. K. Motovilova, A. A. Shkalikovb

a Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (343 kB) Citations (6)
References:
Abstract: Let $T$ be a self-adjoint operator in a Hilbert space $H$ with domain $\mathcal D(T)$. Assume that the spectrum of $T$ is confined in the union of disjoint intervals $\Delta_k =[\alpha_{2k-1},\, \alpha_{2k}]$, $k\in \mathbb{Z}$, the lengths of the gaps between which satisfy inequalities
\begin{equation*} \alpha_{2k+1}-\alpha_{2k} \geqslant b |\alpha_{2k+1}+\alpha_{2k}|^p\quad \text{ for some }\, b\ge 0,\, p\in[0,1). \end{equation*}
Suppose that a linear operator $B$ is $p$-subordinated to $T$, i.e. $\mathcal D(B) \supset\mathcal D(T)$ and $\|Bx\| \leqslant b\,\|Tx\|^p\|x\|^{1-p} +M\|x\| \text{\, for all } x\in \mathcal D(T)$, with some $b\ge0$ and $M\geqslant 0$. Then in the case of $b\ge b$, for large $|k|\geqslant N$, the vertical lines $\gamma_k = \{\lambda\in\mathbb{C}\,| \mathop{\rm Re} \lambda = (\alpha_{2k} + \alpha_{2k+1})/2\}$ lie in the resolvent set of the perturbed operator $A=T+B$. Let $Q_k$ be the Riesz projections associated with the parts of the spectrum of $A$ lying between the lines $\gamma_k$ and $\gamma_{k+1}$ for $|k|\geqslant N$, and let $Q$ be the Riesz projection for the remainder of the spectrum of $A$. Main result is as follows: The system of the invariant subspaces $\{Q_k(H)\}_{|k|\geqslant N}$ together with the invariant subspace $Q(H)$ forms an unconditional basis of subspaces in the space $H$. We also prove a generalization of this theorem to the case where any gap $(\alpha_{2k},\,\alpha_{2k+1})$, $k\in\mathbb{Z}$, may contain a finite number of eigenvalues of $T$.
Keywords: Riesz basis, unconditional basis of subspaces, non-self-adjoint perturbations.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00240
Received: 18.11.2018
Revised: 13.05.2019
Accepted: 16.05.2019
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 47A55, 47A15
Language: Russian
Citation: A. K. Motovilov, A. A. Shkalikov, “Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators”, Funktsional. Anal. i Prilozhen., 53:3 (2019), 45–60
Citation in format AMSBIB
\Bibitem{MotShk19}
\by A.~K.~Motovilov, A.~A.~Shkalikov
\paper Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2019
\vol 53
\issue 3
\pages 45--60
\mathnet{http://mi.mathnet.ru/faa3632}
\crossref{https://doi.org/10.4213/faa3632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3993328}
\elib{https://elibrary.ru/item.asp?id=38710186}
Linking options:
  • https://www.mathnet.ru/eng/faa3632
  • https://doi.org/10.4213/faa3632
  • https://www.mathnet.ru/eng/faa/v53/i3/p45
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:530
    Full-text PDF :67
    References:66
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024