Abstract:
Analogues of the Pólya–Szégö inequality with variable exponent in the integrand are considered. Necessary and sufficient conditions for the fulfillment of these inequalities are obtained.
Citation:
S. V. Bankevich, “On the Pólya–Szégö Inequality for Functionals with Variable Exponent”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 56–60; Funct. Anal. Appl., 52:1 (2018), 45–48
\Bibitem{Ban18}
\by S.~V.~Bankevich
\paper On the P\'olya--Sz\'eg\"o Inequality for Functionals with Variable Exponent
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 1
\pages 56--60
\mathnet{http://mi.mathnet.ru/faa3523}
\crossref{https://doi.org/10.4213/faa3523}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3762286}
\elib{https://elibrary.ru/item.asp?id=32428042}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 1
\pages 45--48
\crossref{https://doi.org/10.1007/s10688-018-0205-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428558200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044764249}
Linking options:
https://www.mathnet.ru/eng/faa3523
https://doi.org/10.4213/faa3523
https://www.mathnet.ru/eng/faa/v52/i1/p56
This publication is cited in the following 2 articles:
D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1
S. V. Bankevich, A. I. Nazarov, “On monotonicity of some functionals with variable exponent under symmetrization”, Appl. Anal., 98:1-2, SI (2019), 362–373