Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2019, Volume 53, Issue 1, Pages 79–83
DOI: https://doi.org/10.4213/faa3516
(Mi faa3516)
 

Brief communications

On the Borsuk–Ulam theorem for Lipschitz mappings in an infinite-dimensional space

B. D. Gel'manab

a Voronezh State University
b Peoples' Friendship University of Russia, Moscow
References:
Abstract: The present paper is devoted to the study of the solvability and dimension of the solution set of the equation $A (x) = f (x)$ on the sphere of a Hilbert space, in the case when A is a closed surjective operator and f a Lipschitz odd mapping. This theorem is a certain "analogue" of the infinite-dimensional version of the Borsuk-Ulam theorem.
Keywords: Borsuk–Ulam theorem, surjective operator, contractive mappings, Lipschitz constant, topological dimension.
Funding agency Grant number
Russian Science Foundation 17-11-01168
Received: 03.09.2017
Bibliographic databases:
Document Type: Article
UDC: 517.988.6
Language: Russian
Citation: B. D. Gel'man, “On the Borsuk–Ulam theorem for Lipschitz mappings in an infinite-dimensional space”, Funktsional. Anal. i Prilozhen., 53:1 (2019), 79–83
Citation in format AMSBIB
\Bibitem{Gel19}
\by B.~D.~Gel'man
\paper On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space
\jour Funktsional. Anal. i Prilozhen.
\yr 2019
\vol 53
\issue 1
\pages 79--83
\mathnet{http://mi.mathnet.ru/faa3516}
\crossref{https://doi.org/10.4213/faa3516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3909121}
\elib{https://elibrary.ru/item.asp?id=37045028}
Linking options:
  • https://www.mathnet.ru/eng/faa3516
  • https://doi.org/10.4213/faa3516
  • https://www.mathnet.ru/eng/faa/v53/i1/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :42
    References:42
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024