|
This article is cited in 6 scientific papers (total in 6 papers)
Brief communications
Hyperquasipolynomials for the Theta-Function
A. A. Illarionov, M. A. Romanov Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Abstract:
Let $g$ be a linear combination with quasipolynomial coefficients of shifts of the Jacobi theta function and its derivatives in the argument. All entire functions $f\colon\mathbb{C}\to\mathbb{C}$ satisfying $f(x+y)g(x-y)=\alpha_1(x)\beta_1(y)+\cdots+\alpha_r(x)\beta_r(y)$ for some $r\in\mathbb{N}$ and $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ are described.
Keywords:
addition theorem, Jacobi theta function, Weierstrass sigma function, elliptic function, functional equation.
Received: 14.07.2017
Citation:
A. A. Illarionov, M. A. Romanov, “Hyperquasipolynomials for the Theta-Function”, Funktsional. Anal. i Prilozhen., 52:3 (2018), 84–87; Funct. Anal. Appl., 52:3 (2018), 228–231
Linking options:
https://www.mathnet.ru/eng/faa3507https://doi.org/10.4213/faa3507 https://www.mathnet.ru/eng/faa/v52/i3/p84
|
|