Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 3, Pages 66–78
DOI: https://doi.org/10.4213/faa3499
(Mi faa3499)
 

This article is cited in 1 scientific paper (total in 1 paper)

Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution

Yue Hua

a University of Chinese Academy of Sciences, Beijing
Full-text PDF (257 kB) Citations (1)
References:
Abstract: A conjecture of Michael Finkelberg and Andrei Ionov is proved on the basis of a generalization of the Springer resolution and the Grauert–Riemenschneider vanishing theorem. As a corollary, it is proved that the coefficients of the multivariable version of Kostka functions introduced by Finkelberg and Ionov are nonnegative.
Keywords: Kostka-Shoji polynomials, cohomology vanishing, quivers, Lusztig convolution diagram.
Received: 20.06.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 3, Pages 214–223
DOI: https://doi.org/10.1007/s10688-018-0230-7
Bibliographic databases:
Document Type: Article
UDC: 512.72
Language: Russian
Citation: Yue Hu, “Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution”, Funktsional. Anal. i Prilozhen., 52:3 (2018), 66–78; Funct. Anal. Appl., 52:3 (2018), 214–223
Citation in format AMSBIB
\Bibitem{Hu18}
\by Yue~Hu
\paper Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 3
\pages 66--78
\mathnet{http://mi.mathnet.ru/faa3499}
\crossref{https://doi.org/10.4213/faa3499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841800}
\elib{https://elibrary.ru/item.asp?id=35276418}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 3
\pages 214--223
\crossref{https://doi.org/10.1007/s10688-018-0230-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448794900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055871821}
Linking options:
  • https://www.mathnet.ru/eng/faa3499
  • https://doi.org/10.4213/faa3499
  • https://www.mathnet.ru/eng/faa/v52/i3/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :27
    References:37
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024