Abstract:
Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. Let $0<\varepsilon\leqslant 1$. In $L_2(\mathcal{O};\mathbb{C}^n)$ we consider a positive definite strongly elliptic second-order operator $B_{D,\varepsilon}$ with Dirichlet boundary condition. Its coefficients are periodic and depend on $\mathbf{x}\varepsilon$. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent $(B_{D,\varepsilon}-\zeta Q_0(\cdot/\varepsilon))^{-1}$ as $\varepsilon \to 0$. Here the matrix-valued function $Q_0$ is periodic, bounded, and positive definite; $\zeta$ is a complex-valued parameter. We find approximations of the generalized resolvent in the $L_2(\mathcal{O};\mathbb{C}^n)$-operator norm and in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ with two-parameter error estimates (depending on $\varepsilon$ and $\zeta$). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation $Q_0({\mathbf x}/\varepsilon)\partial_t {\mathbf v}_\varepsilon({\mathbf x},t)=- ( B_{D,\varepsilon} {\mathbf v}_\varepsilon)({\mathbf x},t)$.
Supported by RFBR (project no. 16-01-00087). The first author is supported by “Native Towns,” a social investment program of PJSC “Gazprom Neft,” by the “Dynasty” foundation, and by the Rokhlin grant.
Citation:
Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funktsional. Anal. i Prilozhen., 51:3 (2017), 87–93; Funct. Anal. Appl., 51:3 (2017), 230–235
\Bibitem{MesSus17}
\by Yu.~M.~Meshkova, T.~A.~Suslina
\paper Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 3
\pages 87--93
\mathnet{http://mi.mathnet.ru/faa3492}
\crossref{https://doi.org/10.4213/faa3492}
\elib{https://elibrary.ru/item.asp?id=29106594}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 3
\pages 230--235
\crossref{https://doi.org/10.1007/s10688-017-0187-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411338100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029762772}
Linking options:
https://www.mathnet.ru/eng/faa3492
https://doi.org/10.4213/faa3492
https://www.mathnet.ru/eng/faa/v51/i3/p87
This publication is cited in the following 5 articles:
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72
Yu. M. Meshkova, “On homogenization of the first initial-boundary value problem for periodic hyperbolic systems”, Appl. Anal., 99:9 (2020), 1528–1563
Yu. M. Meshkova, T. A. Suslina, “Homogenization of the first initial boundary value problem for parabolic systems: Operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978