Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 3, Pages 87–93
DOI: https://doi.org/10.4213/faa3492
(Mi faa3492)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients

Yu. M. Meshkovaa, T. A. Suslinab

a Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
b Department of Physics, St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (187 kB) Citations (5)
References:
Abstract: Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. Let $0<\varepsilon\leqslant 1$. In $L_2(\mathcal{O};\mathbb{C}^n)$ we consider a positive definite strongly elliptic second-order operator $B_{D,\varepsilon}$ with Dirichlet boundary condition. Its coefficients are periodic and depend on $\mathbf{x}\varepsilon$. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent $(B_{D,\varepsilon}-\zeta Q_0(\cdot/\varepsilon))^{-1}$ as $\varepsilon \to 0$. Here the matrix-valued function $Q_0$ is periodic, bounded, and positive definite; $\zeta$ is a complex-valued parameter. We find approximations of the generalized resolvent in the $L_2(\mathcal{O};\mathbb{C}^n)$-operator norm and in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ with two-parameter error estimates (depending on $\varepsilon$ and $\zeta$). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation $Q_0({\mathbf x}/\varepsilon)\partial_t {\mathbf v}_\varepsilon({\mathbf x},t)=- ( B_{D,\varepsilon} {\mathbf v}_\varepsilon)({\mathbf x},t)$.
Keywords: periodic differential operators, elliptic systems, parabolic systems, homogenization, operator error estimates.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087
«Родные города» ПАО «Газпром нефть»
фонд Дмитрия Зимина «Династия»
Rokhlin Scholarship
Supported by RFBR (project no. 16-01-00087). The first author is supported by “Native Towns,” a social investment program of PJSC “Gazprom Neft,” by the “Dynasty” foundation, and by the Rokhlin grant.
Received: 25.05.2017
Accepted: 26.05.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 3, Pages 230–235
DOI: https://doi.org/10.1007/s10688-017-0187-y
Bibliographic databases:
Document Type: Article
UDC: 517.956.2+517.956.4
Language: Russian
Citation: Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funktsional. Anal. i Prilozhen., 51:3 (2017), 87–93; Funct. Anal. Appl., 51:3 (2017), 230–235
Citation in format AMSBIB
\Bibitem{MesSus17}
\by Yu.~M.~Meshkova, T.~A.~Suslina
\paper Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 3
\pages 87--93
\mathnet{http://mi.mathnet.ru/faa3492}
\crossref{https://doi.org/10.4213/faa3492}
\elib{https://elibrary.ru/item.asp?id=29106594}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 3
\pages 230--235
\crossref{https://doi.org/10.1007/s10688-017-0187-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411338100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029762772}
Linking options:
  • https://www.mathnet.ru/eng/faa3492
  • https://doi.org/10.4213/faa3492
  • https://www.mathnet.ru/eng/faa/v51/i3/p87
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024