Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 3, Pages 33–55
DOI: https://doi.org/10.4213/faa3472
(Mi faa3472)
 

This article is cited in 12 scientific papers (total in 12 papers)

Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions

M. M. Malamudab, H. Neidhardtc, V. V. Pellerbd

a Institute of Applied Mathematics and Mechanics NAS of Ukraine, Donetsk, Ukraine
b People’s Friendship University of Russia (RUDN University), Moscow, Russia
c Institut für Angewandte Analysis und Stochastik, Berlin, Germany
d Department of Mathematics, Michigan State University, Michigan, USA
References:
Abstract: In this paper we prove that for an arbitrary pair {T1,T0} of contractions on Hilbert space with trace class difference, there exists a function ξ in L1(T) (called a spectral shift function for the pair {T1,T0}) such that the trace formula trace(f(T1)f(T0))=Tf(ζ)ξ(ζ)dζ holds for an arbitrary operator Lipschitz function f analytic in the unit disk.
Keywords: contraction, dissipative operator, trace formulae, spectral shift function, operator Lipschitz functions, perturbation determinant.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0008
National Science Foundation DMS 1300924
The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number No. 02.A03.21.0008); the research of the third author is partially supported by NSF grant DMS 1300924.
Received: 01.05.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 3, Pages 185–203
DOI: https://doi.org/10.1007/s10688-017-0183-2
Bibliographic databases:
Document Type: Article
UDC: 517.983.24
Language: Russian
Citation: M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funktsional. Anal. i Prilozhen., 51:3 (2017), 33–55; Funct. Anal. Appl., 51:3 (2017), 185–203
Citation in format AMSBIB
\Bibitem{MalNeiPel17}
\by M.~M.~Malamud, H.~Neidhardt, V.~V.~Peller
\paper Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 3
\pages 33--55
\mathnet{http://mi.mathnet.ru/faa3472}
\crossref{https://doi.org/10.4213/faa3472}
\elib{https://elibrary.ru/item.asp?id=29764058}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 3
\pages 185--203
\crossref{https://doi.org/10.1007/s10688-017-0183-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411338100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029748952}
Linking options:
  • https://www.mathnet.ru/eng/faa3472
  • https://doi.org/10.4213/faa3472
  • https://www.mathnet.ru/eng/faa/v51/i3/p33
  • This publication is cited in the following 12 articles:
    1. V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1 (2024), 1–52  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Arup Chattopadhyay, Soma Das, Chandan Pradhan, “Second‐order trace formulas”, Mathematische Nachrichten, 2024  crossref
    3. A. R. Aliev, E. H. Eyvazov, “Spectral Shift Function and Eigenvalues of the Perturbed Operator”, J Math Sci, 282:4 (2024), 464  crossref
    4. M. M. Malamud, H. Neidhardt, V. V. Peller, “Real-Valued Spectral Shift Functions for Contractions and Dissipative Operators”, Dokl. Math., 2024  crossref
    5. M. M. Malamud, H. Neidhardt, V. V. Peller, “The reality of spectral shift functions for contractions and dissipative operators”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 28–32  mathnet  mathnet  crossref
    6. A. Chattopadhyay, S. Das, Ch. Pradhan, “The Koplienko–Neidhardt trace formula for unitaries — a new proof”, J. Math. Anal. Appl., 505:1 (2022), 125467  crossref  mathscinet  zmath  isi  scopus
    7. A. R. Aliev, E. Kh. Eivazov, “Funktsiya spektralnogo sdviga i sobstvennye znacheniya vozmuschennogo operatora”, Issledovaniya po lineinym operatoram i teorii funktsii. 50, Zap. nauchn. sem. POMI, 512, POMI, SPb., 2022, 15–26  mathnet  mathscinet
    8. A. R. Mirotin, “Lifshitz-Krein trace formula for Hirsch functional calculus on Banach spaces”, Complex Anal. Oper. Theory, 13:3 (2019), 1511–1535  crossref  mathscinet  zmath  isi
    9. M. M. Malamud, H. Neidhardt, V. V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276:5 (2019), 1575–1621  crossref  mathscinet  zmath  isi
    10. A. B. Aleksandrov, V. V. Peller, D. S. Potapov, “On a Trace Formula for Functions of Noncommuting Operators”, Math. Notes, 106:4 (2019), 481–487  mathnet  crossref  crossref  mathscinet  isi  elib
    11. A. Skripka, A. Tomskova, “Multilinear operator integrals theory and applications preface”: Skripka, A Tomskova, A, Multilinear Operator Integrals: Theory and Applications, Lect. Notes Math., Lecture Notes in Mathematics, 2250, Springer, 2019, 113  crossref  mathscinet  isi
    12. Mirotin A.R., “Bernstein Functions of Several Semigroup Generators on Banach Spaces Under Bounded Perturbations, II”, Oper. Matrices, 12:2 (2018), 445–463  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1943
    Full-text PDF :77
    References:59
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025