Abstract:
In this paper we prove that for an arbitrary pair {T1,T0} of contractions on Hilbert space with trace class difference, there exists a function ξ in L1(T) (called a spectral shift function for the pair {T1,T0}) such that the trace formula trace(f(T1)−f(T0))=∫Tf′(ζ)ξ(ζ)dζ holds for an arbitrary operator Lipschitz function f analytic in the unit disk.
The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number No. 02.A03.21.0008); the research of the third author is partially supported by NSF grant DMS 1300924.
Citation:
M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funktsional. Anal. i Prilozhen., 51:3 (2017), 33–55; Funct. Anal. Appl., 51:3 (2017), 185–203
A. R. Aliev, E. H. Eyvazov, “Spectral Shift Function and Eigenvalues of the Perturbed Operator”, J Math Sci, 282:4 (2024), 464
M. M. Malamud, H. Neidhardt, V. V. Peller, “Real-Valued Spectral Shift Functions for Contractions and Dissipative Operators”, Dokl. Math., 2024
M. M. Malamud, H. Neidhardt, V. V. Peller, “The reality of spectral shift functions for contractions and dissipative operators”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 28–32
A. Chattopadhyay, S. Das, Ch. Pradhan, “The Koplienko–Neidhardt trace formula for unitaries — a new proof”, J. Math. Anal. Appl., 505:1 (2022), 125467
A. R. Aliev, E. Kh. Eivazov, “Funktsiya spektralnogo sdviga i sobstvennye znacheniya vozmuschennogo operatora”, Issledovaniya po lineinym operatoram i teorii funktsii. 50, Zap. nauchn. sem. POMI, 512, POMI, SPb., 2022, 15–26
A. R. Mirotin, “Lifshitz-Krein trace formula for Hirsch functional calculus on Banach spaces”, Complex Anal. Oper. Theory, 13:3 (2019), 1511–1535
M. M. Malamud, H. Neidhardt, V. V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276:5 (2019), 1575–1621
A. B. Aleksandrov, V. V. Peller, D. S. Potapov, “On a Trace Formula for Functions of Noncommuting Operators”, Math. Notes, 106:4 (2019), 481–487
A. Skripka, A. Tomskova, “Multilinear operator integrals theory and applications preface”: Skripka, A Tomskova, A, Multilinear Operator Integrals: Theory and Applications, Lect. Notes Math., Lecture Notes in Mathematics, 2250, Springer, 2019, 113
Mirotin A.R., “Bernstein Functions of Several Semigroup Generators on Banach Spaces Under Bounded Perturbations, II”, Oper. Matrices, 12:2 (2018), 445–463