Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 2, Pages 72–77
DOI: https://doi.org/10.4213/faa3468
(Mi faa3468)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps

B. D. Gel'manab

a Voronezh State University, Voronezh, Russia
b RUDN University, Moscow, Russia
Full-text PDF (149 kB) Citations (1)
References:
Abstract: A fixed-point theorem is proved for a finite composition of set-valued Lipschitz maps such that the product of their Lipschitz constants is less than 1. The notion of a Lipschitz tuple of (finitely many) set-valued maps is introduced; it is proved that such a tuple has a periodic trajectory, which determines a fixed point of the given composition of set-valued Lipschitz maps. This result is applied to study the coincidence points of a pair of tuples (Lipschitz and covering).
Keywords: set-valued map, Hausdorff metric, Lipschitz set-valued map, fixed point, surjective operator.
Funding agency Grant number
Russian Science Foundation 17-11-01168
This work was financially supported by the Russian Science Foundation (project no. 17-11-01168).
Received: 14.04.2017
Accepted: 26.05.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 2, Pages 139–143
DOI: https://doi.org/10.1007/s10688-018-0219-2
Bibliographic databases:
Document Type: Article
UDC: 517.988.6
Language: Russian
Citation: B. D. Gel'man, “Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps”, Funktsional. Anal. i Prilozhen., 52:2 (2018), 72–77; Funct. Anal. Appl., 52:2 (2018), 139–143
Citation in format AMSBIB
\Bibitem{Gel18}
\by B.~D.~Gel'man
\paper Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 2
\pages 72--77
\mathnet{http://mi.mathnet.ru/faa3468}
\crossref{https://doi.org/10.4213/faa3468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799413}
\elib{https://elibrary.ru/item.asp?id=32837051}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 2
\pages 139--143
\crossref{https://doi.org/10.1007/s10688-018-0219-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437825500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049555643}
Linking options:
  • https://www.mathnet.ru/eng/faa3468
  • https://doi.org/10.4213/faa3468
  • https://www.mathnet.ru/eng/faa/v52/i2/p72
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:402
    Full-text PDF :52
    References:50
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024