Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 3, Pages 56–76
DOI: https://doi.org/10.4213/faa3460
(Mi faa3460)
 

This article is cited in 6 scientific papers (total in 7 papers)

An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions

G. I. Olshanskiiab

a Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
Full-text PDF (301 kB) Citations (7)
References:
Abstract: It is well known how to construct a system of symmetric orthogonal polynomials in an arbitrary finite number of variables from an arbitrary system of orthogonal polynomials on the real line. In the special case of the big $q$-Jacobi polynomials, the number of variables can be made infinite. As a result, in the algebra of symmetric functions, there arises an inhomogeneous basis whose elements are orthogonal with respect to some probability measure. This measure is defined on a certain space of infinite point configurations and hence determines a random point process.
Keywords: Big q-Jacobi polynomials, interpolation polynomials, symmetric functions, Schur functions, beta distribution.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The present research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation (project no. 14-50-00150).
Received: 24.01.2017
Accepted: 24.01.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 3, Pages 204–220
DOI: https://doi.org/10.1007/s10688-017-0184-1
Bibliographic databases:
Document Type: Article
UDC: 517.587+517.588
Language: Russian
Citation: G. I. Olshanskii, “An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions”, Funktsional. Anal. i Prilozhen., 51:3 (2017), 56–76; Funct. Anal. Appl., 51:3 (2017), 204–220
Citation in format AMSBIB
\Bibitem{Ols17}
\by G.~I.~Olshanskii
\paper An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 3
\pages 56--76
\mathnet{http://mi.mathnet.ru/faa3460}
\crossref{https://doi.org/10.4213/faa3460}
\elib{https://elibrary.ru/item.asp?id=29764063}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 3
\pages 204--220
\crossref{https://doi.org/10.1007/s10688-017-0184-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411338100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029755298}
Linking options:
  • https://www.mathnet.ru/eng/faa3460
  • https://doi.org/10.4213/faa3460
  • https://www.mathnet.ru/eng/faa/v51/i3/p56
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :68
    References:71
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024