Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 2, Pages 92–96
DOI: https://doi.org/10.4213/faa3457
(Mi faa3457)
 

This article is cited in 18 scientific papers (total in 18 papers)

Brief communications

On homogenization for non-self-adjoint locally periodic elliptic operators

N. N. Senik

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on $R^d$ of the form $\mathcal A^\varepsilon=-\operatorname{div}A(x,x/\varepsilon)\nabla$. The function $A$ is assumed to be Hölder continuous with exponent $s\in[0,1]$ in the “slow” variable and bounded in the “fast” variable. We construct approximations for $(A^\varepsilon-\mu)^{-1}$, including one with a corrector, and for $(-\Delta)^{s/2}(A^\varepsilon-\mu)^{-1}$ in the operator norm on $L_2(R^d)^n$. For $s\ne0$, we also give estimates of the rates of approximation.
Keywords: homogenization, operator error estimates, locally periodic operators, effective operator, corrector.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087
Contest «Young Russian Mathematics»
Research supported by Young Russian Mathematics award and RFBR grant 16-01-00087.
Received: 23.01.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 2, Pages 152–156
DOI: https://doi.org/10.1007/s10688-017-0178-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funktsional. Anal. i Prilozhen., 51:2 (2017), 92–96; Funct. Anal. Appl., 51:2 (2017), 152–156
Citation in format AMSBIB
\Bibitem{Sen17}
\by N.~N.~Senik
\paper On homogenization for non-self-adjoint locally periodic elliptic operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 2
\pages 92--96
\mathnet{http://mi.mathnet.ru/faa3457}
\crossref{https://doi.org/10.4213/faa3457}
\elib{https://elibrary.ru/item.asp?id=29106595}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 2
\pages 152--156
\crossref{https://doi.org/10.1007/s10688-017-0178-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403405500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020768048}
Linking options:
  • https://www.mathnet.ru/eng/faa3457
  • https://doi.org/10.4213/faa3457
  • https://www.mathnet.ru/eng/faa/v51/i2/p92
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :55
    References:55
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024