Abstract:
Results on the products of the distribution x−r−1/2+x−r−1/2+ with the distributions x−k−1/2−x−k−1/2− and xk−1/2−xk−1/2− are obtained in the differential algebra G(R) of Colombeau generalized functions, which contains the space D′(R) of Schwartz distributions as a subspace; in this algebra the notion of association is defined, which is a faithful generalization of weak equality in G(R). This enables treating the results in terms of distributions again.
Keywords:
distribution, Colombeau algebra, Colombeau generalized functions, multiplication of distributions.
Citation:
M. Miteva, B. Jolevska-Tuneska, T. Atanasova-Pacemska, “Results on the Colombeau Products of the Distribution x−r−1/2+ with the Distributions x−k−1/2− and xk−1/2−”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 13–25; Funct. Anal. Appl., 52:1 (2018), 9–20
\Bibitem{MitJolAta18}
\by M.~Miteva, B.~Jolevska-Tuneska, T.~Atanasova-Pacemska
\paper Results on the Colombeau Products of the Distribution $x_+^{-r-1/2}$ with the Distributions $x_-^{-k-1/2}$ and $x_-^{k-1/2}$
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 1
\pages 13--25
\mathnet{http://mi.mathnet.ru/faa3453}
\crossref{https://doi.org/10.4213/faa3453}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3762283}
\elib{https://elibrary.ru/item.asp?id=32428039}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 1
\pages 9--20
\crossref{https://doi.org/10.1007/s10688-018-0202-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428558200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044728234}
Linking options:
https://www.mathnet.ru/eng/faa3453
https://doi.org/10.4213/faa3453
https://www.mathnet.ru/eng/faa/v52/i1/p13
This publication is cited in the following 1 articles:
Marija Miteva, Limonka Koceva Lazarova, Biljana Zlatanovska, Natasha Stojkovikj, “Products of distributions in Colombeau algebra”, Asian-European J. Math., 17:07 (2024)