Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 1, Pages 92–97
DOI: https://doi.org/10.4213/faa3451
(Mi faa3451)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

Monodromization and Difference Equations with Meromorphic Periodic Coefficients

A. A. Fedotov

Saint Petersburg State University, St. Petersburg, Russia
Full-text PDF (149 kB) Citations (2)
References:
Abstract: We consider a system of two first-order difference equations in the complex plane. We assume that the matrix of the system is a 1-periodic meromorphic function having two simple poles per period and bounded as $\operatorname{Im}z\to\pm \infty$. We prove the existence and uniqueness of minimal meromorphic solutions, i.e., solutions having simultaneously a minimal set of poles and minimal possible growth as $\operatorname{Im}z\to\pm \infty$. We consider the monodromy matrix representing the shift-byperiod operator in the space of meromorphic solutions and corresponding to a basis built of two minimal solutions. We check that it has the same functional structure as the matrix of the initial system of equations and, in particular, is a meromorphic periodic function with two simple poles per period. This implies that the initial equation is invariant with respect to the monodromization procedure, that is, a natural renormalization procedure arising when trying to extend the Floquet–Bloch theory to difference equations defined on the real line or complex plane and having periodic coefficients. Our initial system itself arises after one renormalization of a self-adjoint difference Schrödinger equation with 1-periodic meromorphic potential bounded at $\pm i\infty$ and having two poles per period.
Keywords: difference equations in the complex plane, meromorphic periodic coefficients, monodromy matrix, renormalization procedure.
Funding agency Grant number
Centre National de la Recherche Scientifique
Russian Foundation for Basic Research 17-51-150008
The present work was supported by the Russian foundation of basic research under grant 17-51-150008-CNRS-a.
Received: 02.10.2016
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 1, Pages 77–81
DOI: https://doi.org/10.1007/s10688-018-0213-8
Bibliographic databases:
Document Type: Article
UDC: 517.962.22
Language: Russian
Citation: A. A. Fedotov, “Monodromization and Difference Equations with Meromorphic Periodic Coefficients”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 92–97; Funct. Anal. Appl., 52:1 (2018), 77–81
Citation in format AMSBIB
\Bibitem{Fed18}
\by A.~A.~Fedotov
\paper Monodromization and Difference Equations with Meromorphic Periodic Coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 1
\pages 92--97
\mathnet{http://mi.mathnet.ru/faa3451}
\crossref{https://doi.org/10.4213/faa3451}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3762294}
\elib{https://elibrary.ru/item.asp?id=32428050}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 1
\pages 77--81
\crossref{https://doi.org/10.1007/s10688-018-0213-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428558200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044767007}
Linking options:
  • https://www.mathnet.ru/eng/faa3451
  • https://doi.org/10.4213/faa3451
  • https://www.mathnet.ru/eng/faa/v52/i1/p92
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:401
    Full-text PDF :48
    References:44
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024