Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 1, Pages 76–79
DOI: https://doi.org/10.4213/faa3446
(Mi faa3446)
 

Brief communications

On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure

A. V. Pokrovskii

Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, Ukraine
References:
Abstract: It is shown that, for any compact set $K\subset\mathbb{R}^n$ ($n\ge 2$) of positive Lebesgue measure and any bounded domain $G\supset K$, there exists a function in the Hölder class $C^{1, 1}(G)$ that is a solution of the minimal surface equation in $G\setminus K$ and cannot be extended from $G\setminus K$ to $G$ as a solution of this equation.
Keywords: minimal surface equation, Hölder class, removable set, nonlinear mapping, Schauder theorem, fixed point.
Received: 16.05.2016
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 1, Pages 62–65
DOI: https://doi.org/10.1007/s10688-018-0209-4
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: A. V. Pokrovskii, “On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 76–79; Funct. Anal. Appl., 52:1 (2018), 62–65
Citation in format AMSBIB
\Bibitem{Pok18}
\by A.~V.~Pokrovskii
\paper On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 1
\pages 76--79
\mathnet{http://mi.mathnet.ru/faa3446}
\crossref{https://doi.org/10.4213/faa3446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3762290}
\elib{https://elibrary.ru/item.asp?id=32428046}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 1
\pages 62--65
\crossref{https://doi.org/10.1007/s10688-018-0209-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428558200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044724913}
Linking options:
  • https://www.mathnet.ru/eng/faa3446
  • https://doi.org/10.4213/faa3446
  • https://www.mathnet.ru/eng/faa/v52/i1/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :32
    References:50
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024