|
This article is cited in 1 scientific paper (total in 1 paper)
Spectra of 3×3 upper triangular operator matrices
Xiufeng Wua, Junjie Huanga, Alatancang Chenab a School of Mathematical Sciences, Inner Mongolia University,
Hohhot, P. R. China
b Department of Mathematics, Hohhot University for Nationalities,
Hohhot, P. R. China
Abstract:
Let H1, H2, and H3 be complex separable Hilbert spaces. Given A∈B(H1), B∈B(H2), and C∈B(H3), write MD,E,F=(ADE0BF00C), where D∈B(H2,H1), E∈B(H3,H1), and F∈B(H3,H2) are unknown operators. This paper gives a complete description of the intersection ⋂D,E,Fσ(MD,E,F), where D, E, and F range over the respective sets of bounded linear operators. Further, we show that σ(A)∪σ(B)∪σ(C)=σ(MD,E,F)∪W, where W is the union of certain gaps in σ(MD,E,F), which are subsets of (σ(A)∩σ(B))∪(σ(B)∩σ(C))∪(σ(A)∩σ(C)). Finally, we obtain a necessary and sufficient condition for the relation σ(MD,E,F)=σ(A)∪σ(B)∪σ(C) to hold for any D, E, and F.
Keywords:
spectrum, perturbation, 3×3 upper triangular operator matrix.
Received: 10.09.2015 Revised: 05.05.2016 Accepted: 06.05.2016
Citation:
Xiufeng Wu, Junjie Huang, Alatancang Chen, “Spectra of 3×3 upper triangular operator matrices”, Funktsional. Anal. i Prilozhen., 51:2 (2017), 72–82; Funct. Anal. Appl., 51:2 (2017), 135–143
Linking options:
https://www.mathnet.ru/eng/faa3438https://doi.org/10.4213/faa3438 https://www.mathnet.ru/eng/faa/v51/i2/p72
|
Statistics & downloads: |
Abstract page: | 377 | Full-text PDF : | 40 | References: | 66 | First page: | 17 |
|