Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 1, Pages 85–90
DOI: https://doi.org/10.4213/faa34
(Mi faa34)
 

Brief communications

On the Approximation to Solutions of Operator Equations by the Least Squares Method

M. L. Gorbachuk

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: We consider the equation $Au=f$, where $A$ is a linear operator with compact inverse $A^{-1}$ in a separable Hilbert space $\mathfrak{H}$. For the approximate solution $u_n$ of this equation by the least squares method in a coordinate system $\{e_k\}_{k\in\mathbb{N}}$ that is an orthonormal basis of eigenvectors of a self-adjoint operator $B$ similar to $A$ ($\mathcal{D}(B)=\mathcal{D}(A)$), we give a priori estimates for the asymptotic behavior of the expressions $r_n=\|u_n-u\|$ and $R_n=\|Au_n-f\|$ as $n\to\infty$. A relationship between the order of smallness of these expressions and the degree of smoothness of $u$ with respect to the operator $B$ is established.
Keywords: Hilbert space, operator equation, similar operator, approximate solution, least squares method, coordinate system, a priori estimate, closed operator, smooth vector, analytic vector, entire vector, entire vector of exponential type.
Received: 16.05.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 1, Pages 71–75
DOI: https://doi.org/10.1007/s10688-005-0019-3
Bibliographic databases:
Document Type: Article
UDC: 517.948
Language: Russian
Citation: M. L. Gorbachuk, “On the Approximation to Solutions of Operator Equations by the Least Squares Method”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 85–90; Funct. Anal. Appl., 39:1 (2005), 71–75
Citation in format AMSBIB
\Bibitem{Gor05}
\by M.~L.~Gorbachuk
\paper On the Approximation to Solutions of Operator Equations by the Least Squares Method
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 85--90
\mathnet{http://mi.mathnet.ru/faa34}
\crossref{https://doi.org/10.4213/faa34}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132442}
\zmath{https://zbmath.org/?q=an:1119.65336}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 71--75
\crossref{https://doi.org/10.1007/s10688-005-0019-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229257700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144417815}
Linking options:
  • https://www.mathnet.ru/eng/faa34
  • https://doi.org/10.4213/faa34
  • https://www.mathnet.ru/eng/faa/v39/i1/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024