Citation:
I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funktsional. Anal. i Prilozhen., 34:4 (2000), 75–78; Funct. Anal. Appl., 34:4 (2000), 296–298
Skrypnyk, T, “Integrable deformations of the mKdV and SG hierarchies and quasigraded Lie algebras”, Physica D-Nonlinear Phenomena, 216:2 (2006), 247
T. V. Skrypnik, “Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288
Ebrahimi-Fard, K, “Integrable renormalization II: The general case”, Annales Henri Poincare, 6:2 (2005), 369
T. V. Skrypnyk, “Quasigraded lie algebras, kostant—adler scheme, and integrable hierarchies”, Theor Math Phys, 142:2 (2005), 275
O. V. Efimovskaya, V. V. Sokolov, “Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type”, J. Math. Sci., 136:6 (2006), 4385–4391
Skrypnyk, T, “Deformations of loop algebras and classical integrable systems: Finite-dimensional Hamiltonian systems”, Reviews in Mathematical Physics, 16:7 (2004), 823
Ebrahimi-Fard, K, “Integrable renormalization I: The ladder case”, Journal of Mathematical Physics, 45:10 (2004), 3758
Lombardo, S, “Reductions of integrable equations: dihedral group”, Journal of Physics A-Mathematical and General, 37:31 (2004), 7727
Ebrahimi-Fard, K, “On the associative Nijenhuis relation”, Electronic Journal of Combinatorics, 11:1 (2004), R38
I. Z. Golubchik, V. V. Sokolov, “Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type”, Funct. Anal. Appl., 36:3 (2002), 172–181