Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 1, Pages 28–39
DOI: https://doi.org/10.4213/faa3258
(Mi faa3258)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Relationship between Combinatorial Functions and Representation Theory

A. M. Vershikabc, N. V. Tsilevichab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (224 kB) Citations (2)
References:
Abstract: The paper is devoted to the study of well-known combinatorial functions on the symmetric group Sn—the major index maj, the descent number des, and the inversion number inv—from the representation-theoretic point of view. We show that these functions generate the same ideal in the group algebra C[Sn], and the restriction of the left regular representation of the group Sn to this ideal is isomorphic to its representation in the space of n×n skew-symmetric matrices. This allows us to obtain formulas for the functions maj, des, and inv in terms of matrices of an exceptionally simple form. These formulas are applied to find the spectra of the elements under study in the regular representation, as well as derive a series of identities relating these functions to one another and to the number fix of fixed points.
Keywords: major index, descent number, inversion number, representations of the symmetric group, skew-symmetric matrices, dual complexity.
Funding agency Grant number
Russian Science Foundation 14-50-00150
Received: 14.12.2016
Accepted: 24.01.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 1, Pages 22–31
DOI: https://doi.org/10.1007/s10688-017-0165-4
Bibliographic databases:
Document Type: Article
UDC: 517.986.6, 519.12
Language: Russian
Citation: A. M. Vershik, N. V. Tsilevich, “On the Relationship between Combinatorial Functions and Representation Theory”, Funktsional. Anal. i Prilozhen., 51:1 (2017), 28–39; Funct. Anal. Appl., 51:1 (2017), 22–31
Citation in format AMSBIB
\Bibitem{VerTsi17}
\by A.~M.~Vershik, N.~V.~Tsilevich
\paper On the Relationship between Combinatorial Functions and Representation Theory
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 1
\pages 28--39
\mathnet{http://mi.mathnet.ru/faa3258}
\crossref{https://doi.org/10.4213/faa3258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3647780}
\elib{https://elibrary.ru/item.asp?id=28169173}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 1
\pages 22--31
\crossref{https://doi.org/10.1007/s10688-017-0165-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396373700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015421144}
Linking options:
  • https://www.mathnet.ru/eng/faa3258
  • https://doi.org/10.4213/faa3258
  • https://www.mathnet.ru/eng/faa/v51/i1/p28
  • This publication is cited in the following 2 articles:
    1. Paul Renteln, “A natural idempotent in the descent algebra of a finite Coxeter group”, Algebraic Combinatorics, 6:5 (2023), 1177  crossref  mathscinet
    2. J. Math. Sci. (N. Y.), 232:2 (2018), 170–176  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:511
    Full-text PDF :81
    References:79
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025