Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 4, Pages 91–96
DOI: https://doi.org/10.4213/faa3257
(Mi faa3257)
 

This article is cited in 11 scientific papers (total in 11 papers)

Brief communications

Homogenization of Hyperbolic Equations

M. Dorodnyia, T. A. Suslina

a St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We consider a self-adjoint matrix elliptic operator $A_\varepsilon$, $\varepsilon >0$, on $L_2({\mathbb R}^d;{\mathbb C}^n)$ given by the differential expression $b({\mathbf D})^* g({\mathbf x}/\varepsilon)b({\mathbf D})$. The matrix-valued function $g({\mathbf x})$ is bounded, positive definite, and periodic with respect to some lattice; $b({\mathbf D})$ is an $(m\times n)$-matrix first order differential operator such that $m \ge n$ and the symbol $b(\boldsymbol{\xi})$ has maximal rank. We study the operator cosine $\cos (\tau A^{1/2}_\varepsilon)$, where $\tau \in {\mathbb R}$. It is shown that, as $\varepsilon \to 0$, the operator $\cos (\tau A^{1/2}_\varepsilon)$ converges to $\cos(\tau (A^0)^{1/2})$ in the norm of operators acting from the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$ (with a suitable $s$) to $L_2({\mathbb R}^d;{\mathbb C}^n)$. Here $A^0$ is the effective operator with constant coefficients. Sharp-order error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation $\partial^2_\tau {\mathbf u}_\varepsilon ({\mathbf x}, \tau) =- A_\varepsilon {\mathbf u}_\varepsilon({\mathbf x}, \tau)$.
Keywords: periodic differential operators, hyperbolic equations, homogenization, operator error estimates.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087
Supported by the Russian Foundation for Basic Research (project no. 16-01-00087).
Received: 14.05.2016
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 4, Pages 319–324
DOI: https://doi.org/10.1007/s10688-016-0162-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: M. Dorodnyi, T. A. Suslina, “Homogenization of Hyperbolic Equations”, Funktsional. Anal. i Prilozhen., 50:4 (2016), 91–96; Funct. Anal. Appl., 50:4 (2016), 319–324
Citation in format AMSBIB
\Bibitem{DorSus16}
\by M.~Dorodnyi, T.~A.~Suslina
\paper Homogenization of Hyperbolic Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 4
\pages 91--96
\mathnet{http://mi.mathnet.ru/faa3257}
\crossref{https://doi.org/10.4213/faa3257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646712}
\elib{https://elibrary.ru/item.asp?id=28119107}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 4
\pages 319--324
\crossref{https://doi.org/10.1007/s10688-016-0162-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390093200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85006427492}
Linking options:
  • https://www.mathnet.ru/eng/faa3257
  • https://doi.org/10.4213/faa3257
  • https://www.mathnet.ru/eng/faa/v50/i4/p91
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:571
    Full-text PDF :67
    References:85
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024