Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2000, Volume 34, Issue 4, Pages 49–63
DOI: https://doi.org/10.4213/faa325
(Mi faa325)
 

This article is cited in 13 scientific papers (total in 13 papers)

Special Points of Surfaces in the Three-Dimensional Projective Space

D. A. Panov

Independent University of Moscow
References:
Abstract: In the paper, 3-jets of two-dimensional surfaces in the three-dimensional affine space are classified. It is shown that there are exactly 22 types of co-oriented 3-jets of surfaces. The action of the group of affine transformations on the space of 3-jets is studied. We calculate a universal complex of singularities that is related to the orbits of the group action. Two linear homology relations for the numbers of special elliptic, hyperbolic, and parabolic points of a compact two-dimensional surface embedded in R3 are indicated. The stratification of some real cubic surfaces with respect to the types of 3-jets is described.
Received: 22.12.1998
English version:
Functional Analysis and Its Applications, 2000, Volume 34, Issue 4, Pages 276–287
DOI: https://doi.org/10.1023/A:1004157323726
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: D. A. Panov, “Special Points of Surfaces in the Three-Dimensional Projective Space”, Funktsional. Anal. i Prilozhen., 34:4 (2000), 49–63; Funct. Anal. Appl., 34:4 (2000), 276–287
Citation in format AMSBIB
\Bibitem{Pan00}
\by D.~A.~Panov
\paper Special Points of Surfaces in the Three-Dimensional Projective Space
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 4
\pages 49--63
\mathnet{http://mi.mathnet.ru/faa325}
\crossref{https://doi.org/10.4213/faa325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1818284}
\zmath{https://zbmath.org/?q=an:0980.58002}
\elib{https://elibrary.ru/item.asp?id=5021301}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 4
\pages 276--287
\crossref{https://doi.org/10.1023/A:1004157323726}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166603100004}
Linking options:
  • https://www.mathnet.ru/eng/faa325
  • https://doi.org/10.4213/faa325
  • https://www.mathnet.ru/eng/faa/v34/i4/p49
  • This publication is cited in the following 13 articles:
    1. D. Dreibelbis, W. Olsen, “Structure and transitions of line bitangencies in a family of surface pairs”, J. Geom., 113:2 (2022)  crossref
    2. Maxim Kazarian, Ricardo Uribe-Vargas, “Characteristic points, fundamental cubic form and Euler characteristic of projective surfaces”, Mosc. Math. J., 20:3 (2020), 511–530  mathnet  crossref
    3. Deolindo Silva J.L. Kabata Yu., “Projective Classification of Jets of Surfaces in 4-Space”, Hiroshima Math. J., 49:1 (2019), 35–46  crossref  mathscinet  isi
    4. Freitas B.R., Garcia R.A., “Inflection Points on Hyperbolic Tori of S-3”, Q. J. Math., 69:2 (2018), 709–728  crossref  mathscinet  isi  scopus
    5. Uribe-Vargas R., “On Projective Umbilics: a Geometric Invariant and An Index”, J. Singul., 17 (2018), 81–90  crossref  mathscinet  zmath  isi  scopus
    6. Sano H. Kabata Y. Silva J.L.D. Ohmoto T., “Classification of Jets of Surfaces in Projective 3-Space Via Central Projection”, Bull. Braz. Math. Soc., 48:4 (2017), 623–639  crossref  mathscinet  zmath  isi  scopus
    7. Angel Guadarrama-Garcia M. Ortiz-Rodriguez A., “On the Geometric Structure of Certain Real Algebraic Surfaces”, Geod. Dedic., 191:1 (2017), 153–169  crossref  mathscinet  zmath  isi  scopus
    8. Hernandez Martinez L.I. Ortiz Rodriguez A. Sanchez-Bringas F., “On the Hessian Geometry of a Real Polynomial Hyperbolic Near Infinity”, Adv. Geom., 13:2 (2013), 277–292  crossref  mathscinet  zmath  isi  scopus
    9. Hernandez-Martinez L.I. Ortiz-Rodriguez A. Sanchez-Bringas F., “On the Affine Geometry of the Graph of a Real Polynomial”, J. Dyn. Control Syst., 18:4 (2012), 455–465  crossref  mathscinet  zmath  isi  elib  scopus
    10. Proc. Steklov Inst. Math., 258 (2007), 178–193  mathnet  crossref  mathscinet  zmath  elib
    11. R. Uribe-Vargas, “A projective invariant for swallowtails and godrons, and global theorems on the flecnodal curve”, Mosc. Math. J., 6:4 (2006), 731–768  mathnet  crossref  mathscinet  zmath
    12. Ortiz-Rodriguez, A, “Some aspects of the geometry of real algebraic surfaces”, Bulletin Des Sciences Mathematiques, 127:2 (2003), 149  crossref  mathscinet  zmath  isi  scopus
    13. Ortiz-Rodriguez, A, “On the special parabolic points and the topology of the parabolic curve of certain smooth surfaces in R-3”, Comptes Rendus Mathematique, 334:6 (2002), 473  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :288
    References:105
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025