Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 1, Pages 20–37
DOI: https://doi.org/10.4213/faa3222
(Mi faa3222)
 

This article is cited in 8 scientific papers (total in 8 papers)

Birational Darboux Coordinates on (Co)Adjoint Orbits of GL(N,C)

M. V. Babich

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (245 kB) Citations (8)
References:
Abstract: The set of all linear transformations with a fixed Jordan structure J is a symplectic manifold isomorphic to the coadjoint orbit O(J) of the general linear group GL(N,C). Any linear transformation can be projected along its eigenspace onto a coordinate subspace of complementary dimension. The Jordan structure ˜J of the image under the projection is determined by the Jordan structure J of the preimage; consequently, the projection O(J)O(˜J) is a mapping of symplectic manifolds.
It is proved that the fiber E of the projection is a linear symplectic space and the map O(J)E×O(˜J) is a birational symplectomorphism. Successively projecting the resulting transformations along eigensubspaces yields an isomorphism between O(J) and the linear symplectic space being the direct product of all fibers of the projections. The Darboux coordinates on O(J) are pullbacks of the canonical coordinates on this linear symplectic space.
Canonical coordinates on orbits corresponding to various Jordan structures are constructed as examples.
Keywords: Jordan normal form, Lie–Poisson–Kirillov–Kostant form, birational symplectic coordinates.
Received: 22.09.2014
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 1, Pages 17–30
DOI: https://doi.org/10.1007/s10688-016-0124-5
Bibliographic databases:
Document Type: Article
UDC: 514.76+512.813.4+514.84
Language: Russian
Citation: M. V. Babich, “Birational Darboux Coordinates on (Co)Adjoint Orbits of GL(N,C)”, Funktsional. Anal. i Prilozhen., 50:1 (2016), 20–37; Funct. Anal. Appl., 50:1 (2016), 17–30
Citation in format AMSBIB
\Bibitem{Bab16}
\by M.~V.~Babich
\paper Birational Darboux Coordinates on (Co)Adjoint Orbits of $\operatorname{GL}(N,\mathbb C)$
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 1
\pages 20--37
\mathnet{http://mi.mathnet.ru/faa3222}
\crossref{https://doi.org/10.4213/faa3222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3526970}
\elib{https://elibrary.ru/item.asp?id=25707509}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 1
\pages 17--30
\crossref{https://doi.org/10.1007/s10688-016-0124-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373350300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962045937}
Linking options:
  • https://www.mathnet.ru/eng/faa3222
  • https://doi.org/10.4213/faa3222
  • https://www.mathnet.ru/eng/faa/v50/i1/p20
  • This publication is cited in the following 8 articles:
    1. M. V. Babich, “On Extensions of Canonical Symplectic Structure from Coadjoint Orbit of Complex General Linear Group”, J Math Sci, 257:4 (2021), 442  crossref
    2. Babich V M., “On Canonical Parametrization of Phase Spaces of Isomonodromic Deformation Equations”, Geometric Methods in Physics Xxxvii, Trends in Mathematics, eds. Kielanowski P., Odzijewicz A., Previato E., Birkhauser Verlag Ag, 2020, 3–12  mathscinet  isi
    3. Y. Palii, “Parametrization of a Conjugacy Class of the Special Linear Group”, J Math Sci, 251:3 (2020), 405  crossref
    4. Rouven Frassek, Vasily Pestun, “A Family of $\mathrm{GL}_r$ Multiplicative Higgs Bundles on Rational Base”, SIGMA, 15 (2019), 031, 42 pp.  mathnet  crossref
    5. Yu. Palii, “Parametrizatsiya klassa sopryazhennosti spetsialnoi lineinoi gruppy Li”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXI, Zap. nauchn. sem. POMI, 485, POMI, SPb., 2019, 155–175  mathnet
    6. M. V. Babich, “On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 26, Zap. nauchn. sem. POMI, 487, POMI, SPb., 2019, 28–39  mathnet
    7. M. V. Babich, “On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action”, J. Math. Sci. (N. Y.), 242:5 (2019), 587–594  mathnet  mathnet  crossref  scopus
    8. J. Math. Sci. (N. Y.), 238:6 (2019), 763–768  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :204
    References:103
    First page:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025